QUIZ III - MATH 1021 - NOVEMBER 18, 2004

Note there are several ways of solving these problems and there aren't unique solutions. I am just using properties of vectors here which appear in chapter 4.
(1) Find the equation of the plane which contains both of the lines

$$
L_{1}=\left[\begin{array}{c}
3+2 t \\
-1+t \\
5-t
\end{array}\right]
$$

and

$$
L_{2}=\left[\begin{array}{c}
-4-2 t \\
1-t \\
3+t
\end{array}\right]
$$

Answer: Normally we can take the cross product of the two vectors to find a normal vector. In this case L_{1} is in the direction of $\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]$ and L_{2} is in the direction of $\left[\begin{array}{c}-2 \\ -1 \\ 1\end{array}\right]$ and the cross product of these vectors is 0 . This means that these two lines are parallel. Take any vector which goes from a point on L_{1} to a point on L_{2}, this will be a vector in the plane and it will not be parallel to either L_{1} or L_{2}. Since $(3,-1,5)$ is a point on L_{1} and $(-4,1,3)$ is a point on L_{2}, take $\left[\begin{array}{c}3-(-4) \\ -1-1 \\ 5-3\end{array}\right]=\left[\begin{array}{c}7 \\ -2 \\ 2\end{array}\right]$ as a second vector. Then (for example, there are many solutions here):

$$
\left[\begin{array}{c}
-4 \\
1 \\
3
\end{array}\right]+s\left[\begin{array}{c}
7 \\
-2 \\
2
\end{array}\right]+t\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right]
$$

is the plane which contains them. You can also give this in non-parametric form since $\left[\begin{array}{c}7 \\ -2 \\ 2\end{array}\right] \times\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]=\left[\begin{array}{c}0 \\ 11 \\ 11\end{array}\right]$, so $y+z=4$ is the the non-parametric form.
(2) Find the equation of the line which lies in the plane $P_{1}: 3 x-y-z=4$ and which is perpendicular to the line of intersection of P_{1} and $P_{2}: 2 x+2 y-z=1$ at the point ($0,-1,-3$).

Answer: The line of intersection is parallel to the vector $\left[\begin{array}{c}3 \\ -1 \\ -1\end{array}\right] \times\left[\begin{array}{c}2 \\ 2 \\ -1\end{array}\right]=\left[\begin{array}{l}3 \\ 1 \\ 8\end{array}\right]$. If a line lies in the plane P_{1} then the direction will be perpendicular to $\left[\begin{array}{c}3 \\ -1 \\ -1\end{array}\right]$. Therefore the line must be parallel to $\left[\begin{array}{c}3 \\ -1 \\ -1\end{array}\right] \times\left[\begin{array}{l}3 \\ 1 \\ 8\end{array}\right]=\left[\begin{array}{c}-7 \\ -27 \\ 6\end{array}\right]$. If it also passes through the point $(0,-1,-3)$, then the equation is

$$
\left[\begin{array}{c}
0 \\
-1 \\
-3
\end{array}\right]+t\left[\begin{array}{c}
-7 \\
-27 \\
6
\end{array}\right]
$$

(3) Find the coordinates of the point P in the following diagram where the lines marked with a dash have the same length (note: the diagram is not necessarily exactly to scale):

Answer: \vec{v} is the vector from $(2,1,-1)$ to $(-1,1,3)$ and so $\vec{v}=\left[\begin{array}{c}-3 \\ 0 \\ 4\end{array}\right]$ and \vec{w} is the vector from $(2,1,-1)$ to $(-1,0,1)$ or $\vec{w}=\left[\begin{array}{c}-3 \\ -1 \\ 2\end{array}\right] . \quad$ Now $\operatorname{proj}_{\vec{v}}(w)=\frac{(\vec{w} \cdot \vec{v}) \vec{v}}{|\vec{v}|^{2}}=\frac{17}{25} \vec{v}$ and because we have $\operatorname{proj}_{\vec{v}}(w)+\vec{u}=\vec{w}$ we know that $\vec{u}=\vec{w}-\operatorname{proj}_{\vec{v}}(w)$ and this means that $\vec{w}^{\prime}=\operatorname{proj}_{\vec{v}}(w)-\vec{u}=\operatorname{proj}_{\vec{v}}(w)-\left(\vec{w}-\operatorname{proj}_{\vec{v}}(w)\right)=2 \operatorname{proj}_{\vec{v}}(w)-\vec{w}$. If you work this all out then you have $\vec{w}^{\prime}=\left[\begin{array}{c}-27 / 25 \\ 1 \\ 86 / 25\end{array}\right]$ and if you add \vec{w}^{\prime} to the point $(2,1,-1)$, then you get that $P=(23 / 25,2,61 / 25)$.

