QUIZ IV - MATH 1021 - NOVEMBER 18, 2004

Note there are several ways of solving these problems and there aren't unique solutions. I am just using properties of vectors here which appear in chapter 4.
(1) Find the equation of the plane which contains the line

$$
L_{1}=\left[\begin{array}{c}
3+2 t \\
-1+t \\
5-t
\end{array}\right]
$$

and is parallel to the line

$$
L_{2}=\left[\begin{array}{c}
1+2 t \\
1-t \\
2-t
\end{array}\right]
$$

Answer: $\vec{u}=\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]$ is a vector parallel to L_{1} and $\vec{v}=\left[\begin{array}{c}2 \\ -1 \\ -1\end{array}\right]$ is a vector parallel to L_{2}. A plane which contains these vectors and a point on L_{1} is

$$
P=\left[\begin{array}{c}
3 \\
-1 \\
5
\end{array}\right]+s\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right]+t\left[\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right] .
$$

Also $\vec{u} \times \vec{v}=\left[\begin{array}{c}-2 \\ 0 \\ -4\end{array}\right]$ is a vector normal to the plane, so $-2 x+0 y-4 z=r$ for some r and we plug in the point $(3,-1,5)$ in the equation so that $r=-6+0-20=-26 .-2 x-4 z=-26$ or $x+2 z=13$.
(2) Find the equation of the line which is in the intersection of the plane

$$
P_{1}:\left[\begin{array}{c}
1+2 t-s \\
1-t+s \\
t+2 s
\end{array}\right]
$$

and the plane $P_{2}: 2 x+2 y-z=1$.
Answer: A vector which is perpendicular to P_{1} is $\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right] \times\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{c}-3 \\ -5 \\ 1\end{array}\right]$ and P_{2} is perpendicular to $\left[\begin{array}{c}2 \\ 2 \\ -1\end{array}\right]$. A line which is in the intersection is perpendicular to both of these
vectors so is parallel to $\left[\begin{array}{c}-3 \\ -5 \\ 1\end{array}\right] \times\left[\begin{array}{c}2 \\ 2 \\ -1\end{array}\right]=\left[\begin{array}{c}3 \\ -1 \\ 4\end{array}\right]$. Now a point which lies in the intersection is $(-2,3,1)$. Therefore a line in the intersection is

$$
\left[\begin{array}{c}
-2+3 t \\
3-t \\
1+4 t
\end{array}\right]
$$

(3) Find the coordinates of the point P in the following diagram where the lines marked with a dash have the same length and the marked angles are the same (note: the diagram is not necessarily exactly to scale):

The vector from $(0,1,1)$ to $(-2,1,3)$ is $\vec{v}=\left[\begin{array}{c}-2 \\ 0 \\ 2\end{array}\right]$. The vector from $(0,1,1)$ to $(-1,2,2)$ is $\vec{u}=\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$. The projection from this vector \vec{u} onto \vec{v} is $\operatorname{proj}_{\vec{v}}(\vec{u})=(\vec{u} \cdot \vec{v}) \frac{\vec{v}}{|\vec{v}|^{2}}=\frac{4}{8}\left[\begin{array}{c}-2 \\ 0 \\ 2\end{array}\right]=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$. Now $\vec{u}=\operatorname{proj}_{\vec{v}}(\vec{u})+\vec{w}$, so $\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]+\vec{w}=\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$ this means $\vec{w}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. Now $\vec{v}^{\prime}=-\operatorname{proj}_{\vec{v}}(\vec{u})+\vec{w}=$ $-\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]+\vec{w}=\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$ and this is the vector which starts at $(0,1,1)$ and goes to the point P. This means that $P=(0+1,1+1,1-1)=(1,2,0)$. You can check that the distance from P to $(2,1,-1)$ is equal to the distance from $(-1,2,2)$ to $(-2,1,3)$.

