FINAL EXAM REVIEW - MATH 1021 SECTION A

You will be allowed one page of notes and a calculator (ones that can't do linear algebra) for this exam.
(1) Find the line which best approximates the points $(0,0),(1,1),(2,4),(3,6)$ using the least squares approximation method. If the line is given by the equation $f(x)$, find the values of $f(0), f(1), f(2)$ and $f(3)$. Which point does this line come closest to?
(2) Find the quadratic which best approximates these points.
(3) Find the dimension of the null space of the matrix

$$
A=\left[\begin{array}{llll}
1 & 3 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

(4) Find a basis of the span of the columns of the matrix A.
(5) Are the following vectors linearly independent?

$$
\left\{\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
2 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-2 \\
1 \\
-2
\end{array}\right]\right\}
$$

If not, then find non-zero coefficients such that a linear combination of these vectors is 0 .
(6) Let

$$
B=\left[\begin{array}{cccc}
14 & -22 & -43 & 4 \\
-2 & 4 & 7 & -1 \\
6 & -10 & -19 & 2 \\
8 & -14 & -26 & 3
\end{array}\right]
$$

Find a basis of the eigenspace of B corresponding to the eigenvalue 1.
(7) Find the eigenvalues of the matrix

$$
C=\left[\begin{array}{ccc}
-4 & -10 & -32 \\
11 & 67 & 222 \\
-4 & -20 & -66
\end{array}\right]
$$

(8) What is the dimension of each of the eigenspaces of C for each of the eigenvalues that you found in the last question.
(9) What is the equation of the line which lies in the plane $2 x-y+z=4$ and is perpendicular to the line $(2,1,-1)+t(-1,0,1)$.
(10) What is the equation of the plane which includes the the line $(2,1,-1)+t(-1,0,1)$ and and the point $(-1,1,4)$.
(11) Find a matrix P such that $P Q P^{-1}$ is diagonal where

$$
Q=\left[\begin{array}{ccc}
-1 & -10 & 6 \\
0 & -11 & 6 \\
0 & -18 & 10
\end{array}\right]
$$

(12) Assume that $a_{0}=1$ and $a_{1}=1$ and $a_{n}=2 a_{n-1}+a_{n-2}$. Give a formula for a_{n}.
(13) Find the point on the line $(2,1,-1)+t(-1,2,1)$ which is closest to the point $(4,0,1)$.
(14) Is the set of vectors $\left\{[2-a+b,-1+a, c]^{T}: a, b, c \in \mathbb{R}\right\}$ a subspace of \mathbb{R}^{3} ?
(15) What is the dimension of the span of the vectors $\left\{\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}-1 \\ -1 \\ -1\end{array}\right]\right\}$.
(16) Find the solution to the following system of linear equations:

$$
\begin{aligned}
& 5 x_{1}+x_{2}-x_{3}=12 \\
& 9 x_{1}+x_{2}-x_{3}=22 \\
& x_{1}-x_{2}+5 x_{3}=12
\end{aligned}
$$

(17) Does the set of vectors $\left\{[x, y, z]^{T}: 3 x-y+z=4\right\}$ form a subspace of \mathbb{R}^{3} ?
(18) Simplify the following expression so that it is a simple product of the matrices $R,\left(R^{T}\right)^{-1}$, $R^{-1}, R^{T}, A,\left(A^{T}\right)^{-1}, A^{-1}$ and A^{T},

$$
\left(R^{-1} A^{T}\right)^{T}\left(\left(A^{-1} R^{T} A^{T}\right)^{-1} A^{T}\right)^{T}
$$

(19) Give the parametric equations which describe the plane $x+y-6 z=4$.
(20) Find a basis for the subspace $\left\{[x, y, z, w]^{T}: 3 x-y+z+2 w=0\right.$ and $\left.2 x-y+w=0\right\}$.

