HOMEWORK ASSIGNMENT NO. 4

DATE GIVEN: JANUARY 20 OR 24, 2011 DUE: FEBRUARY 3 OR 7, 2011

You are not expected to do all of the problems on this homework assignment, however it is a good idea to practice all of them. First do problem number 1. Do problem number (your answer to $(1)(\mathrm{a}))+2$. Do problem number (your answer to $(1)(\mathrm{b}))+5$ in two ways: first, by induction; then by telescoping sums. Do (your answer to (1)(c)) +9 .
(1) The following computations will determine which problems you do in this assignment.
(a) Compute your student id number $(\bmod 3)$ as a number between 0 and 2.
(b) Compute your student id number $(\bmod 4)$ as a number between 0 and 3 .
(c) Compute your student id number $(\bmod 5)$ as a number between 0 and 4.
(2) Show that 3^{n+1} divides $2^{3^{n}}+1$ for all $n \geq 0$.
(3) Let $a_{n}^{(6)}$ be the number of points in the $n^{\text {th }}$ diagram of the sequence of drawings of nested hexagons shown below. Show that $a_{n}^{(6)}=n(2 n-1)$.

(4) Prove that if $a_{1}, a_{2}, \ldots, a_{n} \geq 1$, then

$$
2^{n-1}\left(a_{1} a_{2} \cdots a_{n}+1\right) \geq\left(1+a_{1}\right)\left(1+a_{2}\right) \cdots\left(1+a_{n}\right) .
$$

(5) Show that for $n>0$,

$$
1^{4}+3^{4}+5^{4}+\cdots+(2 n-1)^{4}=\left(48 n^{5}-40 n^{3}+7 n\right) / 15
$$

(6) Show that for $n>0$,

$$
1^{3}+3^{3}+5^{3}+\cdots+(2 n-1)^{3}=n^{2}\left(2 n^{2}-1\right) .
$$

(7) Show that for $n>0$,

$$
1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\cdots+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4} .
$$

(8) Show that for $n>0$,

$$
\frac{1}{1 \cdot 5}+\frac{1}{5 \cdot 9}+\cdots+\frac{1}{(4 n-3)(4 n+1)}=\frac{n}{4 n+1} .
$$

(9) Show that if $a_{n}=3 a_{n-1}-2 a_{n-2}+2$ and $a_{0}=a_{1}=1$ then show that $a_{n}=2^{n+1}-(2 n+1)$ for all $n>1$.
(10) Show that if $a_{n}=a_{n-1}+n(n-1)$ and $a_{0}=1$ then conjecture a closed form formula for a_{n} and prove that it is correct by induction.
(11) Show that if $a_{n}=a_{n-1}+a_{n-2}+n$ and $a_{0}=1$ and $a_{-1}=0$, then $a_{n}=2\left(F_{n+3}-1\right)-(n+1)$ for all $n \geq 1$ (where: $F_{1}=F_{2}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for all $n \geq 3$).
(12) Show that if $a_{n}=2 a_{n-1}+2^{n}$ and $a_{0}=1$ then prove $a_{n}=(n+1) 2^{n}$.
(13) Show that if $a_{n}=2 a_{n-1}+(-1)^{n}$ and $a_{0}=2$ then show that $a_{n}=\left(5 \cdot 2^{n}+(-1)^{n}\right) / 3$.

