HOMEWORK ASSIGNMENT NO. 4

DATE GIVEN: JANUARY 20 OR 24, 2011 DUE: FEBRUARY 3 OR 7, 2011

You are not expected to do all of the problems on this homework assignment, however it is a good idea to practice all of them. First do problem number 1. Do problem number (your answer to (1)(a)) + 2. Do problem number (your answer to (1)(b)) + 5 in two ways: first, by induction; then by telescoping sums. Do (your answer to (1)(c)) + 9.

- (1) The following computations will determine which problems you do in this assignment.
 - (a) Compute your student id number (mod 3) as a number between 0 and 2.
 - (b) Compute your student id number $(mod \ 4)$ as a number between 0 and 3.
 - (c) Compute your student id number (mod 5) as a number between 0 and 4.
- (2) Show that 3^{n+1} divides $2^{3^n} + 1$ for all $n \ge 0$.
- (3) Let $a_n^{(6)}$ be the number of points in the n^{th} diagram of the sequence of drawings of nested hexagons shown below. Show that $a_n^{(6)} = n(2n-1)$.

(4) Prove that if $a_1, a_2, \ldots, a_n \ge 1$, then

$$2^{n-1}(a_1a_2\cdots a_n+1) \ge (1+a_1)(1+a_2)\cdots(1+a_n) .$$

(5) Show that for n > 0,

$$1^4 + 3^4 + 5^4 + \dots + (2n-1)^4 = (48n^5 - 40n^3 + 7n)/15$$
.

(6) Show that for n > 0,

$$1^3 + 3^3 + 5^3 + \dots + (2n-1)^3 = n^2(2n^2 - 1)$$
.

(7) Show that for n > 0,

$$1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + n(n+1)(n+2) = \frac{n(n+1)(n+2)(n+3)}{4} .$$

(8) Show that for n > 0,

$$\frac{1}{1\cdot 5} + \frac{1}{5\cdot 9} + \dots + \frac{1}{(4n-3)(4n+1)} = \frac{n}{4n+1}$$

- (9) Show that if $a_n = 3a_{n-1} 2a_{n-2} + 2$ and $a_0 = a_1 = 1$ then show that $a_n = 2^{n+1} (2n+1)$ for all n > 1.
- (10) Show that if $a_n = a_{n-1} + n(n-1)$ and $a_0 = 1$ then conjecture a closed form formula for a_n and prove that it is correct by induction.
- (11) Show that if $a_n = a_{n-1} + a_{n-2} + n$ and $a_0 = 1$ and $a_{-1} = 0$, then $a_n = 2(F_{n+3} 1) (n+1)$ for all $n \ge 1$ (where: $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for all $n \ge 3$).
- (12) Show that if $a_n = 2a_{n-1} + 2^n$ and $a_0 = 1$ then prove $a_n = (n+1)2^n$.
- (13) Show that if $a_n = 2a_{n-1} + (-1)^n$ and $a_0 = 2$ then show that $a_n = (5 \cdot 2^n + (-1)^n)/3$.