ASSIGNMENT 6

DUE: APRIL 17

Questions:

- (1) Did you complete the online course evaluation for math 1200? If not, go to http://courseevaluations.yorku.ca now before you do anything else. You have from March 15 to April 5 to submit your evaluation.
- (2) Prove or disprove each of the following statements
 - (a) If a b is even and c d is even, then ac bd is even.
 - (b) If a^2 is divisible by n, and b^2 is divisible by n, then ab is divisible by n.
 - (c) Let p be a prime, a^2 is divisible by p if and only if a is divisible by p
 - (d) If x and y are in \mathbb{Q} , and x < y, then there is a z in \mathbb{Q} such that x < z < y.
 - (e) For every positive integer $n, n^2 n + 17$ is prime.
- (3) Let n be an integer. Justify the following statements.
 - (a) The last digit of n is even if and only if n is divisible by 2.
 - (b) The last two digits of n are divisible by 4 if and only if n is divisible by 4.
 - (c) The last three digits of n are divisible by 8 if and only if n is divisible by 8.
 - (d) The last k digits of n are divisible by 2^k if and only if n is divisible by 2^k .
- (4) Recall that we call a function $f : A \to B$ 'injective' or '1-1' if for all $x, y \in A$, if f(x) = f(y), then x = y. And we call a function 'surjective' or 'onto' if for every $y \in B$, there is an $x \in A$ such that f(x) = y. Consider the function from $f : \mathbb{Z} \to \mathbb{Z}$ where $f(x) = x^3 4x$ and $g : \mathbb{R} \to \mathbb{R}$ where $g(x) = x^3 1$.
 - (a) Is f injective? Why or why not? If it is demonstrate or explain why. If not, give an example of where it fails to be injective.
 - (b) Is f surjective? Why or why not? If it is demonstrate or explain why. If not, give an example of where it fails to be surjective.
 - (c) Is g injective? Why or why not? If it is demonstrate or explain why. If not, give an example of where it fails to be injective.
 - (d) Is g surjective? Why or why not? If it is demonstrate or explain why. If not, give an example of where it fails to be surjective.
- (5) Write the *negation* and *contrapositive* (if possible) of each of the following statements:
 - (a) For every $q \in \mathbb{Z}$, there exists some $p \in \mathbb{Q}$ such that $q^3 \ge p$.
 - (b) If $x < \log y$ then for all z > 0, $zx < \log(y^z)$.
 - (c) If n is odd then there is some integer k such that n = 2k + 1.
 - (d) If $(x, y) \in A \times B$ or $(x, y) \in A \times C$ then $(x, y) \in A \times (B \cup C)$.
- (6) Show that for all $n, r \ge 0$,

$$\binom{n}{0} + \binom{n+1}{1} + \binom{n+2}{2} + \dots + \binom{n+r}{r} = \binom{n+r+1}{r}.$$

Find a set of lattice paths which are counted by $\binom{n+r+1}{r}$, find a subset of those paths that count $\binom{n}{0}$, $\binom{n+1}{1}$ and more generally $\binom{n+k}{k}$. Use this to show the identity.

- (7) Prove by induction that
 - (a) By induction on r, the identity in the previous problem.
 - (b) By induction on n, the identity in the previous problem.
 - (c) For all $n \ge 0$ that $5^{2n} 1$ is divisible by 24.

DUE: APRIL 17

(d) For every $n \ge 0, 3^n > 2n$.

(8) Consider the following definition of a certain type of integer:

A positive integer n is called *ips* if there exists a positive integer k such that $n = k^2$ and it is called not *ips* otherwise.

- (a) Which of the following integers are or are not ips: -9, 1, 10, 49. Explain your answer by stating why each number does or does not satisfy the definition.
- (b) For each positive integer n, let D_n be the complete set of pairs (a, b) where a and b are positive integers such that n = ab. What are D_9 and D_{12} ?
- (c) Explain why if (a, b) is an element of D_n , then (b, a) is in D_n .
- (d) Explain why if n is not ips and (a, b) is in D_n , then $a \neq b$.
- (e) Explain why if n is an ips, then there is an integer a such that (a, a) is in D_n .