DISCUSSION FOR NINTH TUTORIAL

DATE: FRIDAY MAR 4 (LCT01), MONDAY MAR 7 (LBT01), FRIDAY MAR 11 (LCT02), MONDAY MAR 14
(LBT02 \& LBT03)

The following is partially taken from Konhauser, Velleman, and Wagon, Which Way Did the Bicycle Go? ... and Other Intriguing Mathematical Mysteries.

Problem: Consider the number of ways tilings of a $2 \times n$ rectangle using only 1×2 shaped tiles placed horizontally or vertically as in the following example when $n=4$.

Compute the number of tilings by example for $n=1,2,3,5,6$ and explain why the number of tilings is related to a sequence you have seen before and why they satisfy the same recursive formula.

Next consider the diagram below with a tiling of a 2×7 rectangle with 1×1 and 1×2 tiles (singletons and dominoes; dominoes may be placed horizontally or vertically). How many such tilings of a 2×7 grid are there? More generally, how many tilings of a $2 \times n$ grid are there?

Let a_{n} be the number of tilings of a $2 \times n$ grid using 1×1 and 1×2 tiles so that the right most column is occupied by singletons, let b_{n} be the number of tilings with one singleton and one doubleton in the right most column, and let c_{n} be the number of other tilings (two horizontal doubletons or one vertical doubleton). The problem asks for $a_{7}+b_{7}+c_{7}$. When one appends another column to the right side, forming a $2 \times(n+1)$ grid, either one can add 2 singletons or a vertical doubleton, or one can change any sigletons in the nth column to doubletons. You should explain clearly how this yields three recurrence relations:

$$
\begin{gathered}
a_{n+1}=a_{n}+b_{n}+c_{n} \\
b_{n+1}=2 a_{n}+b_{n} \\
c_{n+1}=2 a_{n}+b_{n}+c_{n}
\end{gathered}
$$

Use these recurrence relations to obtain a general method for computing a_{n}, b_{n} and c_{n}. Use this formula to compute $a_{7}+b_{7}+c_{7}$. An ideal solution should explain how one might compute $a_{50}+$ $b_{50}+c_{50}$ (a 25 digit number).

