HOMEWORK ASSIGNMENT NO. 5

DATE GIVEN: FEBRUARY 27, 2012 DUE: MARCH 19, 2011

(1) Let n be an integer. Justify the following statements.
(a) The last digit of n is even if and only if n is divisible by 2 .
(b) The last two digits of n are divisible by 4 if and only if n is divisible by 4 .
(c) The last three digits of n are divisible by 8 if and only if n is divisible by 8 .
(d) The last k digits of n are divisible by 2^{k} if and only if n is divisible by 2^{k}.

Recall that we call a function $f: A \rightarrow B$ 'injective' or ' $1-1$ ' if for all $x, y \in A$, if $f(x)=f(y)$, then $x=y$. And we call a function 'surjective' or 'onto' if for every $y \in B$, there is an $x \in A$ such that $f(x)=y$.
(2) Consider the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x^{3}-4 x$
(a) Is f injective? Why or why not? If it is demonstrate or explain why. If not, give an example of where it fails to be injective.
(b) Is f surjective? Why or why not? If it is demonstrate or explain why. If not, give an example of where it fails to be surjective.
(3) Consider the function $g: \mathbb{R} \rightarrow \mathbb{R}$ where $g(x)=x^{3}-1$.
(a) Is g injective? Why or why not? If it is demonstrate or explain why. If not, give an example of where it fails to be injective.
(b) Is g surjective? Why or why not? If it is demonstrate or explain why. If not, give an example of where it fails to be surjective.
(4) Let $W=$ the set of words in the letters a and b (the empty word counts as a word).

Let $f_{1}: W \rightarrow W$ be defined so that for a word $w \in W, f_{1}(w)$ be the word found by inserting the letter a in the middle of w word w if w has even length and putting an a at the beginning of the word if it has odd length. For instance $f_{1}(a b b b b b)=a b b a b b b$ and $f_{1}(b a a a b)=a b a a a b$. If w is the empty word, then $f_{1}(w)=a$.
(a) Is this function onto? Why or why not? Explain completely.
(b) Is this function 1-1? Why or why not? Explain completely.

