HOMEWORK ASSIGNMENT NO. 6

DATE GIVEN: MARCH 19, 2012 DUE: DO IT BUT DON'T HAND IT IN

(1) Below are listed relations on sets. Tell whether they are transitive, reflexive and/or symmetric. Explain with a short sentence for each why or why not. If they do not satisfy a property then you should provide a counter-example.
(a) $R_{1}=\{(x, y): x, y \in \mathbb{R}, x= \pm y$ or $\pm 2 y\}$ as a relation on \mathbb{R}
(b) $R_{2}=\left\{(x, y): x, y \in \mathbb{R}, x= \pm \frac{1}{2} y\right.$ or $\left.\pm 2 y\right\}$ as a relation on \mathbb{R}
(c) $R_{3}=\{(x, y): x, y \in \mathbb{R},|x-y| \leq 2\}$ as a relation on \mathbb{R}
(d) $R_{4}=\left\{(x, y): x, y \in \mathbb{Z}, \exists r \in \mathbb{Z}, x-y=r^{2}\right\}$ as a relation on integers.
(e) $R_{5}=\left\{(x, y): x, y \in \mathbb{Z}, \exists r \in \mathbb{Z}, x+y=r^{2}\right\}$ as a relation on integers.
(2) A relation is called anti-symmetric if $(x, y) \in R$ implies that $(y, x) \notin R$. Which of the examples of relations above are anti-symmetric? Explain your answer.
(3) The following questions are be about words in the letters a and b. A word w will be represented as a sequence of letters $w_{1} w_{2} \cdots w_{n}$ where n is the length of the word and w_{i} is either a or b. If u and v are words of length n and r (respectively) then $u v=u_{1} u_{2} \cdots u_{n} v_{1} v_{2} \cdots v_{r}$ is the concatenation of the words.

A word in the letters a and b are called balanced if it has the same number of a 's as b 's. A word is called Catalan if $w=w_{1} w_{2} \ldots w_{n}$ is a balanced word, and $w_{1} w_{2} \ldots w_{k}$ has at least as many a 's as b 's for each k between 1 and n (e.g. $a a b b$ and $a b a b$ are Catalan, but $a b b b$ and $a b b a$ are not).

The following statements are either true or false for all words w and u in a 's and b 's. For each statement, if it is true, provide a proof; if it is false, provide a counter-example.
(a) If w is balanced and $w=u v$, then u is balanced.
(b) If w is Catalan and $w=u v$ where u is balanced, then u is Catalan.
(c) If w is a Catalan word, then $a w_{1} w_{2} \ldots w_{n} b$ is also a Catalan word.
(d) If w is Catalan word and u is balanced, then $w u$ is Catalan.
(e) If $u=a w b=u_{1} u_{2} \ldots u_{n}$ where w is Catalan, then $u_{1} u_{2} \ldots u_{k}$ is not Catalan for any $k<n$.

