Math 2221 - Practice for Final - Zabrocki - April 3, 2008

(1) Find the eigenvalues and the eigenvectors of the following matrix.

$$
\left[\begin{array}{ccc}
-16 & 9 & 45 \\
0 & 2 & 0 \\
-6 & 3 & 17
\end{array}\right]
$$

(2) What is the rank of the matrix?

$$
A=\left[\begin{array}{ccccc}
1 & -2 & 9 & 5 & 4 \\
1 & -1 & 6 & 5 & -3 \\
-2 & 0 & -6 & 1 & -2 \\
4 & 1 & 9 & 1 & -9
\end{array}\right]
$$

Find a basis for $\operatorname{Row}(A), \operatorname{Col}(A)$ and $\operatorname{Null}(A)$.
(3) Find a basis \mathcal{B} for $\operatorname{Nul}(A)$ where

$$
A=\left[\begin{array}{cccc}
1 & -5 & 2 & 8 \\
2 & -4 & 1 & 7 \\
-1 & -3 & 2 & 4 \\
4 & -6 & 1 & 11
\end{array}\right]
$$

Show that the vector $v=\left[\begin{array}{c}-2 \\ 10 \\ 2 \\ 6\end{array}\right]$ is in $\operatorname{Null}(A)$ and give $[v]_{\mathcal{B}}$
(4) Give the LU decomposition of the matrix

$$
\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 & 6 \\
1 & 3 & 4 & 7 & 12 \\
1 & 4 & 6 & 12 & 24
\end{array}\right]
$$

(5) What are the inverses of the following matricies? What are the determinants of the following matrices?
(a)

$$
\left[\begin{array}{cc}
3 & 2 \\
1 & -7
\end{array}\right]
$$

(b)

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

(c)

$$
\left[\begin{array}{ccc}
1 & 0 & -2 \\
1 & -1 & 2 \\
3 & 0 & -5
\end{array}\right]
$$

(6) Find a matrix P such that $P A P^{-1}$ is diagonal where $A=\left[\begin{array}{ccc}13 & 0 & -4 \\ -1 & 2 & 0 \\ 30 & 0 & -9\end{array}\right]$
(7) Find a formula for A^{k} where $A=\left[\begin{array}{cc}-11 & -30 \\ 6 & 16\end{array}\right]$
(8) Give a basis for the following subspaces
(a)

$$
\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a+d=0 \text { and } b+c=0\right\}
$$

(subspace of 2×2 matrices).
(b)

$$
\left\{\left[\begin{array}{c}
x+y+z \\
3 x-y-z \\
-2 y+z \\
2 x+z
\end{array}\right]: x, y, z \in \mathbb{R}\right\}
$$

(subspace of \mathbb{R}^{4})
(9) Which of the following two sets of vectors are bases for \mathbb{R}^{3} ? Explain why they are or are not bases. If the set of vectors is a basis for \mathbb{R}^{3}, then find the change of basis matrix from the standard basis matrix to this set of vectors.
(a) $\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 8\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{c}5 \\ 11 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 1\end{array}\right]\right\}$
(10) Let $A=\left[\begin{array}{ccccc}2 & 5 & -3 & -4 & 8 \\ 4 & 7 & -4 & -3 & 9 \\ 6 & 9 & -5 & 2 & 4 \\ 0 & -9 & 6 & 5 & -6\end{array}\right]$ which we can show row reduces to the matrix

$$
\left[\begin{array}{ccccc}
2 & 5 & -3 & -4 & 8 \\
0 & -3 & 2 & 5 & 7 \\
0 & 0 & 0 & 4 & -6 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Is the linear transformation T where $T(v)=A v 1-1$? Is T an onto the subspace \mathbb{R}^{4} ? Give a basis for the subspace $\left\{T(v): v \in \mathbb{R}^{5}\right\}$ of \mathbb{R}^{4}.
(11) If A is an invertible square matrix, what is $\left(A^{T} A^{-1}\right)^{T}\left(\left(\left(A^{T} A^{-1}\right)^{T} A\right)^{T} A\right)^{-1}$ in terms of products of A, A^{T}, A^{-1} and $\left(A^{T}\right)^{-1}$?
(12) Let T be a linear transformation on \mathbb{R}^{2} such the image of the vectors $\mathbf{e}_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]$ and $\mathbf{e}_{2}=\left[\begin{array}{ll}0 & 1\end{array}\right]$ are shown in the picture. Draw approximately on the picture what the image of $\left[\begin{array}{ll}2 & -1\end{array}\right]$ under the action of T.

