Math 2221 - Practice for Final - Zabrocki - April 3, 2008

(1) Find the eigenvalues and the eigenvectors of the following matrix.

$$
\left[\begin{array}{ccc}
-16 & 9 & 45 \\
0 & 2 & 0 \\
-6 & 3 & 17
\end{array}\right]
$$

Answer: The eigenvalues of the matrix are -1 and $2 .\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$ is a vector with eigenvalue
-1. $\left[\begin{array}{c}5 x+y \\ 2 y \\ 2 x\end{array}\right]$ are all the vectors with eigenvalue 2.
(2) What is the rank of the matrix?

$$
A=\left[\begin{array}{ccccc}
1 & -2 & 9 & 5 & 4 \\
1 & -1 & 6 & 5 & -3 \\
-2 & 0 & -6 & 1 & -2 \\
4 & 1 & 9 & 1 & -9
\end{array}\right]
$$

Find a basis for $\operatorname{Row}(A), \operatorname{Col}(A)$ and $\operatorname{Null}(A)$.
Solution: This matrix row reduces to

$$
\left[\begin{array}{ccccc}
1 & 0 & 3 & 0 & 0 \\
0 & 1 & -3 & 0 & -7 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

We can tell from the row reduced form of the matrix that
basis for $\operatorname{Row}(A)=\left\{\left[\begin{array}{lllll}1 & 0 & 3 & 0 & 0\end{array}\right],\left[\begin{array}{lllll}0 & 1 & -3 & 0 & -7\end{array}\right],\left[\begin{array}{lllll}0 & 0 & 0 & 1 & -2\end{array}\right]\right\}$

$$
\begin{gathered}
\text { basis for } \operatorname{Col}(A)=\left\{\left[\begin{array}{c}
1 \\
1 \\
-2 \\
4
\end{array}\right],\left[\begin{array}{c}
-2 \\
-1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
5 \\
5 \\
1 \\
1
\end{array}\right]\right\} \\
\text { basis for } \operatorname{Null}(A)=\left\{\left[\begin{array}{c}
-3 \\
3 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
7 \\
0 \\
2 \\
1
\end{array}\right]\right\}
\end{gathered}
$$

(3) Find a basis \mathcal{B} for $\operatorname{Nul}(A)$ where

$$
A=\left[\begin{array}{cccc}
1 & -5 & 2 & 8 \\
2 & -4 & 1 & 7 \\
-1 & -3 & 2 & 4 \\
4 & -6 & 1 & 11
\end{array}\right]
$$

Show that the vector $v=\left[\begin{array}{c}-2 \\ 10 \\ 2 \\ 6\end{array}\right]$ is in $\operatorname{Null}(A)$ and give $[v]_{\mathcal{B}}$.

Answer: multiply A times v and you will see that the result is 0 . This shows that v is in $\operatorname{Null}(A)$. A row reduces to the matrix

$$
\left[\begin{array}{cccc}
1 & -1 & 0 & 2 \\
0 & 2 & -1 & -3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

From this we determine that a basis of this space is

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
3 \\
0 \\
2
\end{array}\right]\right\} .
$$

The coordinates of v with respect to \mathcal{B} is $[v]_{\mathcal{B}}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$.
(4) Give the LU decomposition of the matrix

$$
\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 & 6 \\
1 & 3 & 4 & 7 & 12 \\
1 & 4 & 6 & 12 & 24
\end{array}\right]
$$

Answer:

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 2 & 1 & 1 & 0 \\
1 & 3 & 2 & 3 & 1
\end{array}\right]\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 2 & 3 \\
0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

(5) What are the inverses of the following matricies? What are the determinants of the following matrices?
(a)

$$
\left[\begin{array}{cc}
3 & 2 \\
1 & -7
\end{array}\right]
$$

Answer: determinant $=-23$,

$$
A^{-1}=\left[\begin{array}{cc}
\frac{7}{23} & \frac{2}{23} \\
\frac{1}{23} & -\frac{3}{23}
\end{array}\right]
$$

(b)

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Answer: determinant $=1$

$$
A^{-1}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

(c)

$$
\left[\begin{array}{ccc}
1 & 0 & -2 \\
1 & -1 & 2 \\
3 & 0 & -5
\end{array}\right]
$$

determinant $=-1$,

$$
A^{-1}=\left[\begin{array}{ccc}
-5 & 0 & 2 \\
-11 & -1 & 4 \\
-3 & 0 & 1
\end{array}\right]
$$

(6) Find a matrix P such that $P A P^{-1}$ is diagonal where $A=\left[\begin{array}{ccc}13 & 0 & -4 \\ -1 & 2 & 0 \\ 30 & 0 & -9\end{array}\right]$ Solution:

$$
\left[\begin{array}{ccc}
-5 & 0 & 2 \\
-11 & -1 & 4 \\
-3 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
13 & 0 & -4 \\
-1 & 2 & 0 \\
30 & 0 & -9
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -2 \\
1 & -1 & 2 \\
3 & 0 & -5
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

Therefore $P=\left[\begin{array}{ccc}-5 & 0 & 2 \\ -11 & -1 & 4 \\ -3 & 0 & 1\end{array}\right]$
(7) Find a formula for A^{k} where $A=\left[\begin{array}{cc}-11 & -30 \\ 6 & 16\end{array}\right]$

Solution:

$$
\begin{gathered}
D=\left[\begin{array}{cc}
4 & 0 \\
0 & 1
\end{array}\right] \\
P=\left[\begin{array}{cc}
2 & 5 \\
-1 & -2
\end{array}\right] \\
P^{-1}=\left[\begin{array}{cc}
-2 & -5 \\
1 & 2
\end{array}\right] \\
A^{k}=\left[\begin{array}{cc}
5-4 \cdot 4^{k} & 10-10 \cdot 4^{k} \\
2 \cdot 4^{k}-2 & 5 \cdot 4^{k}-4
\end{array}\right]
\end{gathered}
$$

(8) Give a basis for the following subspaces
(a)

$$
\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a+d=0 \text { and } b+c=0\right\}
$$

(subspace of 2×2 matrices).
Answer:

$$
\left\{\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\right\}
$$

(b)

$$
\left\{\left[\begin{array}{c}
x+y+z \\
3 x-y-z \\
-2 y+z \\
2 x+z
\end{array}\right]: x, y, z \in \mathbb{R}\right\}
$$

(subspace of \mathbb{R}^{4})

Answer:

$$
\left\{\left[\begin{array}{l}
1 \\
3 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
-2 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right]\right\}
$$

(9) Which of the following two sets of vectors are bases for \mathbb{R}^{3} ? Explain why they are or are not bases. If the set of vectors is a basis for \mathbb{R}^{3}, then find the change of basis matrix from the standard basis matrix to this set of vectors.
(a) $\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 8\end{array}\right]\right\}$

Answer: not a basis. These vectors are not linearly independent.
(b) $\left\{\left[\begin{array}{c}5 \\ 11 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 1\end{array}\right]\right\}$

Answer: Is a basis the change of basis matrix from the standard basis to this is the inverse of the matrix

$$
\left[\begin{array}{ccc}
5 & 0 & 2 \\
11 & 1 & 4 \\
3 & 0 & 1
\end{array}\right]
$$

and this is

$$
\left[\begin{array}{ccc}
-1 & 0 & 2 \\
-1 & 1 & -2 \\
3 & 0 & -5
\end{array}\right]
$$

(10) Let $A=\left[\begin{array}{ccccc}2 & 5 & -3 & -4 & 8 \\ 4 & 7 & -4 & -3 & 9 \\ 6 & 9 & -5 & 2 & 4 \\ 0 & -9 & 6 & 5 & -6\end{array}\right]$ which we can show row reduces to the matrix

$$
\left[\begin{array}{ccccc}
2 & 5 & -3 & -4 & 8 \\
0 & -3 & 2 & 5 & 7 \\
0 & 0 & 0 & 4 & -6 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Is the linear transformation T where $T(v)=A v 1-1$? Is T an onto the subspace \mathbb{R}^{4} ? Give a basis for the subspace $\left\{T(v): v \in \mathbb{R}^{5}\right\}$ of \mathbb{R}^{4}.
Answer: T is not $1-1$. There are more columns than rows in the row reduced matrix so there are an infinite number of solutions to $A v=\mathbf{0} . T$ is not onto the subspace \mathbb{R}^{4} because the number of non-zero rows in the row reduced matrix is 3 and this is less than the number of elements in a basis for \mathbb{R}^{4}. Note that $\left\{T(v): v \in \mathbb{R}^{5}\right\}$ is the same as $\operatorname{Col}(A)$ by definition, a basis is therefore given by

$$
\left\{\left[\begin{array}{l}
2 \\
4 \\
6 \\
0
\end{array}\right],\left[\begin{array}{c}
5 \\
7 \\
9 \\
-9
\end{array}\right],\left[\begin{array}{c}
-4 \\
-3 \\
2 \\
5
\end{array}\right]\right\}
$$

(11) If A is an invertible square matrix, what is $\left(A^{T} A^{-1}\right)^{T}\left(\left(\left(A^{T} A^{-1}\right)^{T} A\right)^{T} A\right)^{-1}$ in term 5 of products of A, A^{T}, A^{-1} and $\left(A^{T}\right)^{-1}$? Answer:

$$
\begin{gathered}
\left(A^{T}\right)^{-1} A\left(\left(\left(A^{T} A^{-1}\right)^{T} A\right)^{T} A\right)^{-1} \\
\left(A^{T}\right)^{-1} A\left(\left(\left(A^{T}\right)^{-1} A A\right)^{T} A\right)^{-1} \\
\left(A^{T}\right)^{-1} A\left(A^{T} A^{T} A^{-1} A\right)^{-1} \\
\left(A^{T}\right)^{-1} A\left(A^{T}\right)^{-1}\left(A^{T}\right)^{-1}
\end{gathered}
$$

(12) Let T be a linear transformation on \mathbb{R}^{2} such the image of the vectors $\mathbf{e}_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]$ and $\mathbf{e}_{2}=\left[\begin{array}{ll}0 & 1\end{array}\right]$ are shown in the picture. Draw approximately on the picture what the image of $\left[\begin{array}{ll}2 & -1\end{array}\right]$ under the action of T.

Answer:

