MATH 2590 - ASSIGNMENT 2

OCTOBER 5, 2010

If we divide an integer a by by a positive integer n then $a=q n+r$ where q is called the 'quotient,' and r the 'remainder' with $0 \leq r<n$. If a and b are integers, I will say that $a \equiv b(\bmod n)$ if $a-b$ is 'divisible' by n (meaning that the remainder is 0 when I divide $a-b$ by $n)$. (Example: $2 \equiv 7(\bmod 5)$ because $2-7=-5$ which is divisible by 5$)$ When I have an expression $(\bmod n)$ this means that after I figure out what expression is, I should find the remainder of that expression when I divide by n. (Example: $3 \cdot 3-2(\bmod 5)$ is $7(\bmod 5)$ and since $7=1 \cdot 5+2$ then this is $2(\bmod 5))$.

Part I - Modular arithmetic

(1) Find the remainder:
(a) $-3(\bmod 20)$
(b) $55(\bmod 4)$
(c) $238712638(\bmod 10)$
(d) $-45(\bmod 11)$
(2) Compute the following:
(a) $3 \cdot 17(\bmod 20)$
(b) $5 \cdot 5+12(\bmod 4)$
(c) $5(\bmod 4)$
(d) $5 \cdot 5(\bmod 4)$
(e) $12(\bmod 4)$
(f) $55 \cdot 31 \cdot 61 \cdot 103(\bmod 10)$
$(\mathrm{g}) 5^{3}(\bmod 7)$
(3) Compute powers of $2(\bmod 5)$
(a) $2^{2}(\bmod 5)$
(b) $2^{3}(\bmod 5)$
(c) $2^{4}(\bmod 5)$
(d) $2^{5}(\bmod 5)$
(4) Compute powers of $2(\bmod 7)$
(a) $2^{2}(\bmod 7)$
(b) $2^{3}(\bmod 7)$
(c) $2^{4}(\bmod 7)$
(d) $2^{5}(\bmod 7)$
(e) $2^{6}(\bmod 7)$
(5) Make a table of the powers of $2(\bmod 9)$ up to the point where the table repeats
(6) Make a table of the powers of $2(\bmod 11)$ up to the point where the table repeats
(7) Make a table of the powers of $2(\bmod 13)$ up to the point where the table repeats
(8) Make a table of the powers of $2(\bmod 15)$ up to the point where the table repeats

Part II - Shuffling cards

(1) How many shuffles of a 4 card deck brings the cards back to the original order?
(2) How many shuffles of a 6 card deck brings the cards back to the original order?
(3) How many shuffles of a 8 card deck brings the cards back to the original order?
(4) How many shuffles of a 10 card deck brings the cards back to the original order?
(5) How many shuffles of a 12 card deck brings the cards back to the original order?
(6) How many shuffles of a 14 card deck brings the cards back to the original order?

