MATH 2590 – Thinking Mathematically Professor: Mike Zabrocki

Kidney Transplant and Math

Exercise:

Now it is your turn to draw the graph. This exercise is a very simplified form of the graph theory demonstrated above. Its goal is to give you an idea of how they match pairs in a way that satisfies most of the patients in need of kidneys. In order to complete this exercise, you will need to refer to *the Red Blood Cell Compatibility Table* shown below in figure 4.

Recipient	Donor								
	0-	0+	A-	A+	B-	B+	AB-	AB+	
0-	1								
0+	1	1							
A-	1		\checkmark						
A+	1	1	1	1					
B-	1				1				
B+	1	1			1	1			
AB-	1		1		1		1		
AB+	1	1	1	1	1	1	1	1	

Figure 4: Blood Type (Source: http://en.wikipedia.org/wiki/Blood_type)

First, look at the donor/recipient blood type information below

Donor-Recipient	Donor Blood Type	Recipient Blood Type
Pair I	\mathbf{B}^+	A^+
Pair II	B	\mathbf{O}^+
Pair III	A^+	B^+
Pair IV	O^+	AB

Note: According to the Red Blood Cell Compatibility Table above, all these pairs are incompatible. Second, draw a circular graph with 4 nodes, each node representing a pair.

SARAH AND CAROLINE

☑ Third, look at the recipient/donor blood types and then try to match them. To make it easier, let us draw a table that shows all possible matches regardless of the recipient's blood type.

Donor Blood Type	All Possible Match	Possible Recipients
i.e. D ₁ : B ⁺	B^+, AB^+	$R_{3}\left(\mathrm{B}^{\scriptscriptstyle +}\right)$
D₂: B ⁻	,,,	
D_3 : A^+		
D_4 : O^+	,,,	

Finally, connect all possible matches.