

MATH 2590 - Thinking Mathematically Professor: Mike Zabrocki

Kidney Transplant and Math

Exercise:

Now it is your turn to draw the graph. This exercise is a very simplified form of the graph theory demonstrated above. Its goal is to give you an idea of how they match pairs in a way that satisfies most of the patients in need of kidneys. In order to complete this exercise, you will need to refer to the Red Blood Cell Compatibility Table shown below in figure 4.

Figure 4: Blood Type
(Source: http://en.wikipedia.org/wiki/Blood_type)
目 First, look at the donor/recipient blood type information below

\quadDonor-Recipient Donor Blood Type	Recipient Blood Type	
Pair I	B^{+}	A^{+}
Pair II	B^{-}	O^{+}
Pair III	A^{+}	B^{+}
Pair IV	O^{+}	AB^{-}

Note: According to the Red Blood Cell Compatibility Table above, all these pairs are incompatible. [x] Second, draw a circular graph with 4 nodes, each node representing a pair.
[団 Third, look at the recipient/donor blood types and then try to match them. To make it easier, let us draw a table that shows all possible matches regardless of the recipient's blood type.

Donor Blood Type i.e. $\mathrm{D}_{1}: \mathbf{B}^{+}$	All Possible Match	Possible Recipients
$\mathrm{D}_{2}: \mathbf{B}^{-}$,$- \mathrm{AB}^{+}$	$\mathbf{R}_{\mathbf{3}\left(\mathrm{B}^{+}\right)}$
$\mathrm{D}_{3}: \mathbf{A}^{+}$,,,---	-
$\mathrm{D}_{4}: \mathbf{O}^{+}$,,---	-

図 Finally, connect all possible matches.

