QUESTION FOR JOURNAL ENTRY \# 7

FOR: TUESDAY, NOVEMBER 23, 2010

This is roughly the problem Square Take-away from Thinking Mathematically.

Take a rectangular piece of paper and remove from it the largest possible square. Repeat the process with the left-over rectangle. Does the process terminate? If so, how many steps does it take (what does this depend on)?

Consider the following examples of these $8 \times 5,40 \times 25,1 \times \frac{8}{5}, 3 \times 2,4 \times 6,5 \times 5,1 \times n, 9 \times 1$, $9 \times 2,9 \times 3,9 \times 4, \sqrt{2} \times 2 \sqrt{2}, 1 \times \sqrt{2}, 2 \times(1+\sqrt{5})$. How many steps does it take for each of these? What does your answer depend on?

Of course the first step is to establish a conjecture and the next step is to justify that your conjecture is correct. Your solution should explain your observations if the ratio of the sides of the rectangle is a rational number and then when it is not a rational number. Moreover you will need to compute data for lots of examples (more than those that I suggested above) to see if you can observe a pattern for the number of steps that it takes to remove the whole rectangle.

