
HOMEWORK #2 - MATH 3260

ASSIGNED: JANUARAY 30, 2003 DUE: FEBRUARY 15, 2002 AT 2:30PM

(1) (a) Give by listing the sequence of vertices 4 Hamiltonian cycles in K9 no two of which
have an edge in common.

Solution: Here is one set of 4 Hamiltonian cycles. There are many different cycles that
are also disjoint.

1 ↔ 2 ↔ 3 ↔ 4 ↔ 5 ↔ 6 ↔ 7 ↔ 8 ↔ 9 ↔ 1

1 ↔ 3 ↔ 5 ↔ 7 ↔ 9 ↔ 2 ↔ 4 ↔ 6 ↔ 8 ↔ 1

1 ↔ 4 ↔ 7 ↔ 3 ↔ 9 ↔ 6 ↔ 2 ↔ 8 ↔ 5 ↔ 1

1 ↔ 6 ↔ 3 ↔ 8 ↔ 4 ↔ 9 ↔ 5 ↔ 2 ↔ 7 ↔ 1

(b) What is the maximum number of edge disjoint Hamiltonian cycles in K2k+1?

Solution: We can find 1 disjoint Hamiltonian cycle of K3, 2 disjoint cycles of K5, 3
disjoint cycles of K7, and 4 disjoint cycles of K9. This indicates that one can find k
disjoint Hamiltonian cycles in K2k+1. We need to justify this answer though.

Certainly there can be no more than k disjoint Hamiltonian cycles because each cycle
has 2k + 1 edges and if there are k of them then we have used up k(2k + 1) edges and
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there are only k(2k + 1) edges in K2k+1. There could be less cycles, so we need to
describe k of them.

I will describe here how to produce a Hamiltonian cycles for each integer between 1
and k which is relatively prime to 2k + 1. If 2k + 1 is prime then this produces k
different cycles. If 2k + 1 is not prime then I don’t know how to produce k different
cycles (and for all I know they may not exist).

Let d equal a number 1 through k which is relatively prime to 2k + 1. The subgraph
that has an edge from i to j if either i−j−d is divisible by 2k+1 or j−i−d is divisible
by 2k + 1 is a cycle because the first vertex is 1, the second 1 + d, the third 1 + 2d, the
fourth will be 1+3d (mod 2k +1), etc. This produces 2k +1 different vertices because
if d is relatively prime to 2k + 1 then the numbers 0, d (mod 2k + 1), 2d (mod 2k + 1),
etc. are all distinct (I have to appeal to some algebra to say why this is true) and so
this produces a Hamiltonian cycle. I claim also that each of these Hamiltonian cycles
are distinct. For each pair i ↔ j, −2k ≤ i − j ≤ 2k and without loss of generality,
assume i > j and 1 ≤ i − j ≤ 2k. If 1 ≤ i − j ≤ k then there is exactly one integer
between 1 and k such that i − j − d is divisible by 2k + 1 (namely d = i − j) and if
k + 1 ≤ i− j ≤ 2k then d = 2k + 1− i + j is between 1 and k and j − i− d is divisibly
by 2k + 1. Therefore exactly one cycle corresponding to a particular d uses the edge
i ↔ j.

(2) Find the shortest path from A to each of the other vertices in the weighted graph of the
figure below. Draw a spanning tree rooted at A with smallest weight. Are there others?

Solution: We will do a table as in the algorithm we did in class.

distance vertex A B C D E F G H I J K
0 A 0 1 5
1 B 0 1 3 5 4 5
3 C 0 1 3 5 4 5 9
4 E 0 1 3 5 4 5 9 7 11
5 F 0 1 3 5 4 5 6 7 11
5 D 0 1 3 5 4 5 6 7 11
6 G 0 1 3 5 4 5 6 7 8 8
7 H 0 1 3 5 4 5 6 7 8 8 13
8 I 0 1 3 5 4 5 6 7 8 8 13
8 J 0 1 3 5 4 5 6 7 8 8 11
11 K 0 1 3 5 4 5 6 7 8 8 11

There are two possible shortest trees and this comes from the step in the algorithm when
at a distance of 7 from A, the shortest path from A to I is already 8 (by passing through
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G) and the edges from H to I will also create a path from A to I of length 8. Below are
the only two minimal length spanning trees that are rooted at A.

(3) Let T1 and T2 be spanning trees of a connected graph G.
(a) If e is any edge of T1, show that there exists an edge f of T2 such that the graph with

edge set equal to E(T1) − {e} ∪ {f} (obtained from T1 by replacing e by f) is also a
spanning tree.

Solution: Let e be an edge of T1. If e is also an edge of T2 then f = e has the property
that the tree with edge set equal to E(T1) − {e} ∪ {f} is the same as T1 and so is a
spanning tree. If this edge is not in T2 then if it is added to the edge set of T2 then it
creates exactly one cycle (by theorem 9.1.vi). Take this cycle and add all edges into T1

and find the smallest cycle which contains e (there is at least one since the whole cycle
contains e). Take f to be an edge of this cycle which is not in T1 (since T1 has no cycles
there must be at least one). Now the graph consisting of edge set E(T1) − {e} ∪ {f}
has n− 1 edges and no cycles and by theorem 9.1.ii is a tree.

(b) Transform the graph on the left to the one on the right by a sequence of trees each of
which differs from the next by a single edge. Explain why this can be done for any two
trees with the same vertex set.

Solution: Here is a sequence of trees which transforms the first tree into the second (it
is not unique).

The reason why this always works on any two trees with the same vertex set is that we
can apply the first part of this problem with any edge e which is not in the second tree.
There is an edge f in the second tree which is not in the first and obtain a tree with
edge set E(T1) − {e} ∪ {f} that will have one more edge in common with the second
tree and one edge which is not in common with the first. If we continue to apply this
result, each successive tree has one more edge in common with the second graph and
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one less edge in common with the first graph until eventually the trees differ by exactly
one edge.

(4) How many spanning trees does Wn have for n ≥ 4?

Answer: Let an be the number of spanning trees of the wheel graph for n ≥ 4, then

an =

(
3 +

√
5

2

)n−1

+

(
3−

√
5

2

)n−1

− 2

This is a pretty amazing formula, huh? Compute the first few and you will find a4 = 16,
a5 = 45, a6 = 121, a7 = 320, etc. You will also find that an = 3an−1 − an−2 + 2.

Solution: Using the Matrix-Tree Theorem (Theorem 10.3 in your book) we see that an

is equal to

an = det

∣∣∣∣∣∣∣∣∣∣∣∣∣

3 −1 0 · · · 0 −1
−1 3 −1 0 · · · 0
0 −1 3 −1 · · · 0
...

. . .
...

0 · · · 0 −1 3 −1
−1 0 · · · 0 −1 3

∣∣∣∣∣∣∣∣∣∣∣∣∣
where the determinant is an (n− 1)× (n− 1) matrix. This is tough to compute, but it isn’t
too bad if you use the right notation. Let Bn be the n×n matrix with bii = 3 and bij = −1
if |i− j| = 1 and bij = 0 if |i− j| > 1. That is,

Bn =



3 −1 0 · · · 0 0
−1 3 −1 0 · · · 0
0 −1 3 −1 · · · 0
...

. . .
...

0 · · · 0 −1 3 −1
0 0 · · · 0 −1 3


Expand the determinant that an is equal to about the first row and we have

an = 3 · det |Bn−2|+

∣∣∣∣∣∣∣∣∣∣∣

−1 −1 0 · · · 0
0
... Bn−3

0
−1

∣∣∣∣∣∣∣∣∣∣∣
+ (−1)n

∣∣∣∣∣∣∣∣∣∣∣

−1
0
... Bn−3

0
−1 0 · · · 0 −1

∣∣∣∣∣∣∣∣∣∣∣
.

Expanding these last two determinants even further we can show that the relation is:

an = 3 · det [Bn−2]− 2 · det [Bn−3]− 2

Notice that the det [Bn] also satisfies a recurrence

det [Bn] = 3 · det [Bn−1]− det [Bn−2]
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which we have found by expanding det [Bn] about the first row. Now combine these two
recurrences and we find that

an = 3 · (3 · det [Bn−3]− det [Bn−4])− 2 · (3 · det [Bn−4]− det [Bn−5])− 2

= 3 · (3 · det [Bn−3]− 2 · det [Bn−4]− 2)− (3 · det [Bn−4]− 2 · det [Bn−5]− 2) + 2
= 3 · an−1 − an−2 + 2

Therefore we have shown that these numbers an satisfy a recurrence an = 3 · an−1− an−2 +
2. But now look at the answer that was given above, because it too satisfies the same

recurrence. If we assume that ak =
(

3+
√

5
2

)k−1
+
(

3−
√

5
2

)k−1
− 2 for k < n, then since

7+3
√

5
2 =

(
3+
√

5
2

)2
and 7−3

√
5

2 =
(

3−
√

5
2

)2
we have then

an = 3an−1 − an−2 + 2

= 3

(
3 +

√
5

2

)n−2

+ 3

(
3−

√
5

2

)n−2

− 6−

(
3 +

√
5

2

)n−3

−

(
3−

√
5

2

)n−3

+ 2 + 2

=

(
3 +

√
5

2

)n−3(
9 + 3

√
5

2
− 1

)
+

(
3−

√
5

2

)n−3(
9− 3

√
5

2
− 1

)
− 2

=

(
3 +

√
5

2

)n−3(
7 + 3

√
5

2

)
+

(
3−

√
5

2

)n−3(
7− 3

√
5

2

)
− 2

=

(
3 +

√
5

2

)n−1

+

(
3−

√
5

2

)n−1

− 2

To justify that this works we still need to verify a couple of base cases (to make sure that an
argument by induction works) for values of an and show that they satisfy the formula listed
above, but this is not too difficult especially when we know that a4 = 16 from Theorem
10.1 and with a little counting argument we can show that a5 = 45.

(5) Prove that any tree which is semi-Hamiltonian is isomorphic to Pn.

A tree on n vertices has n−1 edges. Any graph with n vertices which is semi-Hamiltonian
has a subgraph isomorphic to Pn that passes through each vertex exactly once and this path
has n− 1 edges. A tree, T , which is semi-Hamiltonian has the path as a subgraph and this
path has the same number of edges and vertices as T and so is equal to the whole graph.


