Plaintext Message Space M = {my,my,...,my}
Key Space K = {ki, ka,..., ks}
Ciphertext Message Space C = {c1,¢c,...,cQ}

c = Ex(m) m = Dy(c)
The encrypting The decrypting
transformation using to transformation using to
the key k the key k

Two sets of probabilities

’ {p17p27"'7pN} and {Q17q27---aQS} ‘




Random Cryptographic Transaction

M = the chosen plaintext
Three random variables ¢ K = the chosen key

C = the resulting ciphertext

@ Sender produces a message M which is a random variable with
P(M = m;) = p;

@ Sender selects a key K by an independent mechanism with
P(K = ks) = qs

@ The sender encrypts M into C = Ex(M) and sends it to the
intended recipient.

@ Under our assumptions, the random variable C is dependent
on M and K.



C yields no information about M means that M and C

are independent random variables.

Definition: We say that a random cryptographic system achieves
perfect secrecy if for all choices of m; € M and ¢; € C, we have

P(M =m;, C = ¢j) = P(M=m;)P(C = ¢)




P[M = m;, C = ¢j] = P[M = mj]P[C = ¢j]

Since every message m; must be able to be sent to every cyphertext
¢j (since M and C are independent), it must be that the number
of keys is larger than or equal to the number of cyphertexts.



PIM = m;, C = ¢j] = P[M = mj]P[C = ¢j]

Since if we fix a key k we see every message is sent to a different
cyphertext we must have that the number of cyphertexts is larger
or equal to the number of plaintexts.



attack at 11:38am plans cancelled Ah
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octopus Roger Moore Tina Southerland Jerry Seinfeld



Theorem
Perfect secrecy is achieved when

v All keys are equally likely

® For each pair (m;, ¢j) there is a unique key, ks, such that




Theorem
Perfect secrecy is achieved when

v All keys are equally likely

® For each pair (m;, ¢;) there is a unique key, ks, such that

Ex.(mi) = ¢
Proof.
N
P(C=q)=> PM=m) > PK=k)
i=1 Eks(m,')ZCj

But if there is only one key ks yielding Ei (mi) = ¢ then the inner
sum reduces to a single term, and if all keys are equally likely then
P(K=ks)=1/S



Theorem
Perfect secrecy is achieved when

v All keys are equally likely

® For each pair (m;, ¢;) there is a unique key, ks, such that

Ex.(mi) = ¢;

On the other hand

P(M=m;,C=¢) = Z P(M = m;)P(K = ks)



Latin Squares

‘ # of Keys = # of Ciphers = # of Plaintexts ‘

|_ mi mo m3 m4-|
ki 12 3 4
ky 2 3 4 1
ksy 3 4 1 2
ke 4 1 2 3

A latin square is an n X n array where the integers 1 through n
appear exactly once in each row and column.



Latin Squares

‘ # of Keys = # of Ciphers = # of Plaintexts ‘

[ my my m3 my]
ki 1 2 3 4
k| 2 3 4 1
ksl 3 4 1 2
ks 4 1 2 3

A latin square is an n x n array where the integers 1 through n
appear exactly once in each row and column.



One Time Pad

A “one time pad system” is one in which we encrypt a message
with N letters by means of N random integer keys

ki, ko, ... kn

in the range 0...25 with each of these possibilities equally likely.
The it letter of the message is encrypted by the Caesar
substitution Ci, (in other words the i*" letter is Caesar k;-shifted).
The vector

(k1, ko, ..., kn)

is called the key stream.



Theorem

The one time pad system achieves perfect secrecy.

Proof. It is easy to see that given any cipher
Cc = Y1 Y2 cee YN

and message
m = X1X2 o -XN

there is one and only one key stream
(k1, ko, ..., kn)

such that
Y;=X;+k mod 26.

Since all keys are equally likely we have the conditions of the
previous theorem are satisfied.



