
Quadratic Residues

Theorem 1 For a prime p the equation

P (x) = a0 + a1x + a2x
2 + · · · + anx

n = 0 (mod p)

has at most n solutions.

Note that an equation may have no solution at all

x2 = 2 mod 5

11 ≡ 1, 22 ≡ 4, 32 ≡ 4, 42 ≡ 1

Definition: We say that a is a quadratic residue mod p if

x2 − a = 0 mod p

has a solution x.
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Quadratic Residues

Denote the set of quadratic residues by the symbol

QR[p] =
{
x2 mod p | x ∈ {1, 2, . . . p− 1}

}
.

Example

1. p = 11

x 1 2 3 4 5 6 7 8 9 10
x2 1 4 9 5 3 3 5 9 4 1

QR[11] = {1, 4, 9, 5, 3}.

2. p = 13

x 1 2 3 4 5 6 7 8 9 10 11 12
x2 1 4 9 3 12 10 10 12 3 9 4 1

QR[13] = {1, 4, 9, 3, 12, 10}.
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Theorem 2 Precisely 1/2 of the integers in
{1, 2, . . . , p− 1} are quadratic residues mod p.

Proof.
Clearly,

QR[p] = {12, 22, 32, . . . , (p− 1)2}.
Notice that

(p− i)2 = p2 − 2 p i + i2 = i2 (mod p)

Therefore

QR[p] = {12, 22, 32, . . . , ((p− 1)/2)2}.

These numbers are all distinct mod p since

i2 − j2 = (i− j)(i + j)

gives that we cannot have i2 = j2 mod p without p dividing
one of the two numbers i− j or i + j. However, if both i
and j are no larger than (p− 1)/2, p cannot divide i + j.
Thus i2 = j2 forces i = j in this case.
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Theorem 3 For any prime p > 2 and any integer a not
equal to 0 (mod p) we have

a(p−1)/2 =

{
1 if a ∈ QR[p]

−1 if a $∈ QR[p]

Proof.
If a = x2 with x $= 0 mod p then Fermat’s theorem gives

a(p−1)/2 = xp−1 = 1 (mod p)

Thus the first part of our assertion holds true. To prove the
second part, note that the equation

xp−1 − 1 = 0 (mod p)

has exactly p− 1 solutions in {1, 2, . . . , p− 1} and for
p > 2 we have the factorization

xp−1 − 1 = (x(p−1)/2 − 1)(x(p−1)/2 + 1).

All (p− 1)/2 elements of QR[p] satisfy the first factor.
Therefore the other (p− 1)/2 solutions must satisfy

x(p−1)/2 + 1 = 0.
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Legendre Symbol

For a prime p

(
a

p

)
=






1 if a ∈ QR[p]

−1 if a $∈ QR[p]

0 if gcd(a, p) > 1

Then for a relatively prime to p, we have
(

a

p

)
= a(p−1)/2 mod p

Hence (
ab

p

)
=

(
a

p

) (
b

p

)

Theorem 4 (Quadratic Reciprocity) For any two
primes p and q we have

(
p

q

) (
q

p

)
= (−1)(p−1)(q−1)/4
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Jacobi Symbol

We start with the Legendre symbol
(

a

p

)
=

{
1 if a ∈ QR[p]

−1 if a $∈ QR[p]

and for
n = p1p2 · · · pk

we set

J(a, n) =

(
a

p1

) (
a

p2

)
· · ·

(
a

pk

)

However, for n odd, we have

J(a, n) =






1 if a = 1

J(a/2, n)(−1)(n
2−1)/8 if a is even

J(n mod a, a)(−1)(n−1)(a−1)/4 if a > 1 and odd
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Primality Testing

The Jacobi symbol allows us to test for primality of n
without carrying out its factorization.

If n is prime then

J(a, n) = a(n−1)/2 mod n

Thus if this identity fails to hold for any value of a in
[1, n− 1] we can certainly conclude that n is not a prime!

Theorem 5 If n is not a prime then for more than one
half the integers in {1, . . . , n− 1} one of the following two
tests will fail

J(a, n) = a(n−1)/2 gcd(a, n) = 1
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To select a prime at random in a given range, we proceed as
follows.

1. We first pick an (odd) integer n at random in the given
range.

2. We next pick at random a certain (previously agreed
upon) number k of integers a1, a2, . . . , ak in the interval
{1, . . . , n− 1}.

3. For each number, check that

gcd(ai, n) = 1 and J(ai, n) = a(n−1)/2 mod n

If n happened to be prime then it will pass all of these tests.
On the other hand, if n is not a prime, it will pass all of
these tests with probability less than (1/2)k.
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