Modern Cryptography

. The opponent knows the system being used

. The opponent has access to any amount of corresponding
plaintext-ciphertext pairs

. The opponent has access to the key used in the
encrypting transformation Ei(M) = C.

. Security is to be achieved by the opponent not being able
to construct the decrypting transformation Dy(C') = M.

A map FE}. is said to be a trapdoor function if the
construction of the inverse map, Dy, is of such theoretical
complexity as to make it inaccessible to our present day
computational tools.

NOTE: A trapdoor function may be so
today... but may not be so tomorrow!!
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The RSA System

Choose p and ¢ primes and let m = pq
Message space: {1,2,...,m — 1}.
Key space: {e |1 <e < ¢(m), ged(e, p(m)) = 1}

Encrypting transformation

C'=FE.(M)=M°modm

. Decrypting transformation

M = Dy(C) = C% mod m

where ed = 1 mod ¢(m)




An RSA Example

1. Choose p and ¢

p = 1873 g=131 § — | m = 245,363
2. Select message
M = 2905

3. Select encrypting exponent

4. Encrypt message

C = M°¢ = 2905%3 mod 245,363 = 13,388

5. Compute decrypting exponent

ed =1 mod ¢(m) | — | d = 148,247

6. Decrypt message

C? = 13, 38818247 mod 245,363 = 2905




RSA: Why it works

How do we know that
C4= M= M modm
when ed = 1 mod ¢(m)?

Recall

Theorem 1 (Euler-Fermat) If a and m are relatively

prime then
a®™ =1 mod m.

What if M and m are not relatively prime?

Theorem 2 (Euler-Fermat for RSA) If m = pq where
p and q are primes then for all integers a and k we have

L+ko(m) = o mod m

a




Proof of Theorem 2

Assume gced(a, m) = p.
ged(a,m) = p = a = xp for some x
Therefore

ged(xp, pg) = p = ged(z,q) =1
= ged(a,q) =1

Euler-Fermat yields
a9 =1 modq = a?' =1+ hyg
Raise both sides to the k(p — 1) for any k:
aFP=Dle=1) — kolm) — 1 4 hogq

Multiply both sides by a:

a0 — 4 4 aheq = a4+ hoxrpg = a mod m




Converting Messages into Numbers

The following is one of many possible methods for
converting text into numbers. The basic idea is to use
letters as the digits of a number written in base 26. Since
any resulting N digit number (base 26) must be less than
m, we have that

m > 26" —1 = N = |logysm]

m = 245,363 = N =3

Encrypt the message “THE":

“T796Y + “H726" + “E’26% = 19+ 7-26 + 4 - 262
— 2905

29005°* = 13,388 mod m
= 24+ 514 - 26
= 244 (20 +19-26) - 26
— 2442026+ 19-26°+0 - 26°
= “Y726" + “U”26' + “T"26" + “A”26°

NOTE: Use N + 1 digits for the ciphertext since some values of C' = M¢ are on the interval 267, m — 1].




An Observation

If m = pq, with p and ¢ distincts primes, then
¢(m) = (p—1)(¢—1).

[t is noteworthy that in this case, we can reconstruct the
factorization of m from the knowledge of the value ¢(m).

More precisely, we have

p(m) = (p—1)(g—1)
=pq—p—q+1

or equivalently,
m+1—¢(m)=p+q.
Therefore the roots of the polynomial

> —(m+1—om)r+m = 2°— (p+q)z +pg
= (z —p)(z —q)

are exactly p and gq.




Another Observation

Assuming that m = pq, the following equation
2> =1 mod m

has exactly 4 solutions. They can be found using the
Chinese Remainder Theorem applied to each of the
following systems of equations

r=1modp |xr=1modp
r=1modg |xr=—1modygq
r=—1modp|xr=—1mod p
r=1modqg |x=—1modgq

Clearly, two of these solutions are x = 1, while the other
two are x = %a for some a. If we could find a, then

a*=1 modm = a*—1=km
= (a—1)(a+1)=km
= m = ged(a — 1,m) x ged(a + 1, m)

Given d, the decrypting exponent, there is a probabilistic
method to find a.




To find a nontrivial solution of * = 1 mod m (with only
the knowledge of d), we proceed as follows:

1. Choose k at random between 2 and m — 2.

2. Compute z := ged(k, n).

&2

If x > 1 then x is a factor of n and it must be equal to
p or q, so we are finished. Otherwise

Write ed — 1 = 2°r with r odd.
Compute y := k".

If y=1(modm) then try again.
Find the least j (0 < j < s) such that

y? =1 (mod m), and set x := y?
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8.

9. Else (z + 1,n) is a factor of n and it must be equal to p
or q, so we are finished.

If = -1 (modn) then try again,




Digital Signatures (Needs Improvement)

How can we be sure that when we recieve a message from
P;, that it was actually sent by P;?

Say Alice selects primes p; and ¢ and publishes ny = p1qq
and e;.

Say Bob selects primes py and g9 and publishes ny = pogs
and es.

For Bob to communicate with Alice, he takes his message

M encrypts by
Mimodn;.

But anyone could have sent this message to Alice. How can
Bob ensure that Alice knows that he sent the message.
Instead, Bob should send the following:

(MEmodn, )imodns.

To decrypt the message, Alice would first have to encrypt it
using Bob’s public encrypting exponent ey then decrypt
using her own decrypting exponent d;. Since only Bob
knows his decrypting exponent, the message will wind up
being incomprehensible unless it was really Bob who sent
the message.




Exercises

. An individual publishes an RSA modulus of m = 350123
and an encryption exponent e = 37. Find his decrypting
exponent, given that one of the factors of m is 347.

. Encrypt each letter of the word BANG individually using
the RSA system with m = 143 and e = 7. In translating
letters into numbers, send A to 10, B to 11, ..., Z to 35.

. Using the same system described in the previous
problem, find the decrypting exponent d and decode the
message 132 (a single letter).

. Factor m = 773, 771 into the product of two primes given
that ¢(m) = 771, 552.




