- N Suppose we have a computer program which generates words from the alphabet A,B,C,D according to the following procedure: below then constructs each additional letter using the table of conditional biletter frequencies given below. Pick the first letter according to the single frequency table given
- a) Calculate the probability that the program produces the word "DACE b) Determine the 2 letter word that has the highest probability.

Single letter table A 10 B 9 C 12 D 9	Single letter table A 10 B 9 C 12 D 9				80,00	iiiiiiii I		
ngle Iter 10	ngle Iter 10 10	D	C	₩	Þ	tak	e	Sir
) [9	12	9	10	ole	ter	ngle
			HIDAY		TO SE	I		
D C B A Bilet			J (ດ ເ	D :	>		B

Territoria.	****	1072	•		
U	C	₩	D		<u>B</u>
2	0	2	0	Þ	Biletter table
_	2	2 1	ω	₩	er t
$\overline{}$	0	1	_	C	abl
_	ω	0	0	o	Ф

P(word = DACB) = P(first letter = D). P(second letter = A | first letter = D) thind = C) second letter = A | first letter = B) thind = C) - 240. 24. 1/4. 2/5 = 2000

84 % 4 CA - DA 60 BC 86 % 4 CB 60 % 60 CB 60 % 60 CB 60 % 60 CB 60 % 60 CB 14.03/2 C 14.03/2 B 14.03/2 B

AB is largest probability

The index of coincidence is defined as

$$I_c = \frac{\text{number of pairs of equal letters in ciphertext}}{\text{the total number of pairs of letters}}$$

That is if we set

cyphertext $\mathcal{N}_{\alpha}=$ the number of occurrences of the letter α in the

 $D_{c} = \sum_{\alpha=A}^{Z} {N_{\alpha} \choose 2} = \sum_{\alpha=A}^{Z} \frac{N_{\alpha} (N_{\alpha}-1)}{\alpha}$

cyphertext. D_c represents the number of pairs of equal letters in the

- then $I_c = \frac{D_c}{\binom{N}{2}}$
- ullet where N= the number of letters in the cyphertext