Huflman Heights

Theorem 3 A letter that occurs with probability p will be represented by
a leaf with height h < [log, 1/p] in the Huffman tree.
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L0 Th\)\(helg It of that same leaf in the resulting tree is exactly A+ 1, which
is bounded above by:
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Note that ¢» > ¢, as assumed in the construction of the Huffman code.
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Expected Code Length

Theorem 4 The Huffman Code yields expected code length within 1 of the
entropy, H.

Proof. Assume that h; = [log, 1/p;].
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Therefore the sequence hy, ho, ... hj corresponds to a binary tree 2
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