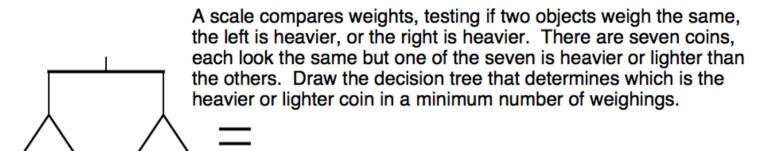
(1) Say that you have a cryptosystem with two plaintext messages m_0 = "The British are coming" and m_1 = "The sky is falling" that each occur with probability 1/2. Also say that there are 4 keys which are equally likely k_0, k_1, k_2, k_3 which send the plaintext messages to one of the four cyphertexts

 c_0 = "cheese sandwiches." c_1 = "milk and cookies" c_2 = "mashed potatoes" c_3 = "Ted Danson."


Say that message m_i will be sent under key k_j to the cyphertext $c_{2i+j(mod4)}$.

- (a) It is agreed in advance that today key that is being used is k_2 . You receive the message "mashed potatoes." What plaintext does this represent?
- (b) Does this system achieve perfect secrecy? Why or why not?
- (c) Compute H(K|C).
- (d) Now assume that the 4 keys are not chosen with equal probability and instead k_0 and k_2 are chosen with probability 1/8 and k_1 and k_3 are chosen with probability 3/8. Does this system achieve perfect secrecy? Why or why not?
- (e) Under this new system calculate H(K|C).
- (2) Calculate the unicity distance of the Vernam cipher with p=7 and q=5 (the lengths of the two keys). Use the table from the notes to estimate the entropy of English and assume that all keys are equally likely.
- 1. In the enciphering system MIX45 the message is first Vigenere encrypted with a 4-letter keyword, and then subjected to a rectangular transposition of period 5. Determine the unicity distance of MIX45. Assume all ciphers are equally likely.

Suppose you are to write a program to simulate the output of a fortune wheel producing 1 2 3 4 5 6 with respective probabilities

1/8 1/8 1/4 1/6 1/6 1/6

Suppose you have already written a random number generator yielding a random variable W uniformly distributed in [0,1] and that the only thing missing in your program is the procedure which converts W into one of the numbers 1 2 3 4 5 6. Draw the decision tree that carries out this conversion with the smallest expected number of comparisons.

