FINAL EXAM (PART II - QUESTION 6 THROUGH 10) OF MATH 5020

ASSIGNED: FEBRUARY 16, 2004 - DUE: MARCH 1, 2004

There are a few instructions for this exam that I want to give in advance:

- I am not expecting you to spend a lot of time explaining the answer to the following questions, but I do expect that you write a sentence or two which tells me that you know what you are doing (i.e. DON'T give me just the answer to the following problems).
- On the previous exam I asked you to work alone and this instruction was only followed to a certain degree. On this exam you may work with another person, however if you choose to speak with someone else about this exam they must do a different problem as you. Please write the name and question number of any person you discuss a problem with on the exam. When you discuss a question, please do not 'give' the solution to someone. I have the right to give a 0 if these instructions are not followed.
- You may ask me questions although I would like you to ask them in the FORUM, this way everyone has the chance to read the same instructions/information.
- Do one of problems 1 and 2 and one of problems 3,4 or 5 .
(1) Let $A(q)$ represent the generating function $a_{0}+a_{1} q+a_{2} q^{2}+a_{3} q^{3}+a_{4} q^{4}+\cdots$. Find the coefficient of q^{n} in the following expressions.
(a)

$$
(A(q)+A(-q)) / 2
$$

(b)

$$
(A(q)-A(-q)) / 2
$$

(c)

$$
A(5 q)
$$

(d)

$$
A\left(q^{2}\right)
$$

(e)

$$
\frac{1}{k!} \frac{d^{k}}{d q^{k}} A(q)
$$

(2) Find the coefficient of q^{7} in the following generating functions
(a)

$$
\frac{1-q^{3}}{1-q} \frac{1}{1-5 q}
$$

(b)

$$
\frac{1-q^{12}}{1-q}\left(1+q+q^{4}+q^{5}\right)
$$

(c)

$$
\frac{q^{3}}{(1-3 q)^{5}}
$$

(d)

$$
q\left(1+4 q^{2}\right)^{7}
$$

(e)

$$
\frac{1+q^{3}}{1+q} \frac{1}{(1-q)^{10}}
$$

(3) Using identity (9) and (10) from the handout "Some connections between Algebraic Expressions and Sequences : Part II" we know that $L(q)=(1+2 q) F(q)$ where $L(q)=\sum_{n \geq 0} L_{n+1} q^{n}$ and $F(q)=\sum_{n \geq 0} F_{n+1} q^{n}$. Use this to show identity:

$$
L_{n}-2 L_{n-1}+4 L_{n-2}-\cdots+(-1)^{n-1} 2^{n-1} L_{1}=F_{n}
$$

(4) Use the identity $\frac{q+q^{2}}{(1-q)^{3}}=\sum_{n \geq 0} n^{2} q^{n}$ and $\frac{1}{(1-q)^{3}}=\sum_{n \geq 0}\binom{n+2}{2}$ to show the following identity:

$$
n^{2}-(n-1)^{2}+(n-2)^{2}-(n-3)^{2}+\cdots+(-1)^{n-1} 1^{2}=\binom{n+1}{2}
$$

(5) How many ways are there of choosing 60 marbles from a collection of 50 red, 35 blue and 15 green?

