SOME CONNECTIONS BETWEEN ALGEBRAIC EXPRESSIONS AND COMBINATORIAL IDENTITIES

FEBRUARY 23, 2004

(1) Recall $\frac{1}{(1-q)^{k+1}}=\sum_{n \geq 0}\binom{n+k}{k} q^{n}$. Take the coefficient in the left and right hand side of

$$
\frac{1}{1-q} \frac{1}{(1-q)^{2}}=\frac{1}{(1-q)^{3}}
$$

and give a formula for $\sum_{i=1}^{n} i$.
(2) Recall $\frac{q+q^{2}}{(1-q)^{3}}=\sum_{n \geq 0} n^{2} q^{n}$. Take the coefficient in the left and right hand side of

$$
\frac{1}{1-q} \frac{q+q^{2}}{(1-q)^{3}}=\frac{q}{(1-q)^{4}}+\frac{q^{2}}{(1-q)^{4}}
$$

and show \#1 from p. 6 of 'Number Theory.'
(3) Recall $\frac{q+4 q^{2}+q^{3}}{(1-q)^{4}}=\sum_{n \geq 0} n^{3} q^{n}$. Take the coefficient in the left and right hand side of

$$
\frac{1}{1-q} \frac{q+4 q^{2}+q^{3}}{(1-q)^{4}}=\frac{q}{(1-q)^{5}}+4 \frac{q^{2}}{(1-q)^{5}}+\frac{q^{3}}{(1-q)^{5}}
$$

and show \#2 from p. 6 of 'Number Theory.'
(4) Recall that $\frac{d^{2}}{d q^{2}}\left(\frac{1}{1-q}\right)=\sum_{n \geq 0}(n+1)(n+2) q^{n}$. Take the coefficient in the left and right hand side of

$$
\frac{1}{1-q} \frac{d^{2}}{d q^{2}}\left(\frac{1}{1-q}\right)=\frac{2}{(1-q)^{3}}
$$

and show $\# 4$ from p. 6 of 'Number Theory.'
(5) (a) What is the coefficient of q^{n} in $\frac{d}{d q}(-q \ln (1-q))$?
(b) What is the coefficient of q^{n} in $\int_{*}^{q}(-\ln (1-x)) d x$?
(6) Recall that $\frac{1}{1-q-q^{2}}=\sum_{n \geq 0} F_{n+1} q^{n}$ Take the coefficient of q^{n} in the left and right hand side of

$$
\frac{1}{1-q} \frac{1}{1-q-q^{2}}=\frac{1}{q^{2}}\left(\frac{1}{1-q-q^{2}}-\frac{1}{1-q}\right)
$$

and show $\# 7$ from p. 6 of 'Number Theory.'
(7) (a) What is the coefficient of q^{n} in $\frac{1}{2}\left(\frac{1}{1-q-q^{2}}+\frac{1}{1+q-q^{2}}\right)=\frac{1-q^{2}}{\left(1-q-q^{2}\right)\left(1+q-q^{2}\right)}$?
(b) What is the coefficient of q^{n} in $\frac{1}{2 q}\left(\frac{1}{1-q-q^{2}}-\frac{1}{1+q-q^{2}}\right)=\frac{1}{\left(1-q-q^{2}\right)\left(1+q-q^{2}\right)}$?
(c) Take the coefficient of $q^{2 n}$ in the left and right hand side of

$$
\frac{1-q^{2}}{\left(1-q-q^{2}\right)\left(1+q-q^{2}\right)} \frac{1}{1-q^{2}}=\frac{1}{\left(1-q-q^{2}\right)\left(1+q-q^{2}\right)}
$$

and show \#8 from p. 7 of 'Number Theory.'
(8) Recall $\frac{1+2 q}{1-q-q^{2}}=\sum_{n \geq 0} L_{n+1} q^{n}$ Take the coefficient of q^{n} in the left and right hand side of the equation

$$
\left(\frac{1+4 q}{1-2 q-4 q^{2}}\right) \frac{q}{1-q}=\frac{1}{1-2 q-4 q^{2}}-\frac{1}{1-q}
$$

and show $\# 16$ from p. 7 of 'Number Theory.'
(9) Take the coefficient of q^{m} in the left and right hand side of the equation

$$
\frac{1}{1-q} \frac{1}{(1-q)^{r+1}}=\frac{1}{(1-q)^{r+2}}
$$

and show $\# 5$ from p. 34 of 'Number Theory.'
(10) Take the coefficient of q^{r} in the left and right hand side of the equation

$$
\frac{1}{1+q}(1+q)^{n}=(1+q)^{n-1}
$$

(11) Take the coefficient of q^{n} in the left and right hand side of the equation

$$
\frac{1}{1-\left(q+q^{2}\right)}=\sum_{k \geq 0}\left(q+q^{2}\right)^{k}=\sum_{k \geq 0} q^{k}(1+q)^{k}
$$

and show \#13 from p. 35 of 'Number Theory.'
(12) Take the coefficient of q^{k+r} in the left and right hand side of the equation

$$
(1+q)^{n}(1+q)^{r}=(1+q)^{n+r}
$$

and show the identity that I gave you as a "Prove by counting in two different ways:" last term.

