SOME CONNECTIONS BETWEEN COMBINATORIAL IDENTITIES AND ALGEBRAIC EXPRESSIONS

MARCH 1, 2004

When you answer the following questions refer to the handout titled "Some connections between algebraic expressions and sequences : Part II" with a list of useful generating functions.
(1) (a) Give a generating function which contains the expression

$$
\binom{n}{0}\binom{n}{n}+\binom{n}{1}\binom{n}{n-1}+\binom{n}{2}\binom{n}{n-2}+\cdots+\binom{n}{n}\binom{n}{0}
$$

as one of the terms and which is related to the generating function for the sequence $\binom{2 n}{k}$.
(b) Prove

$$
\binom{n}{0}^{2}+\binom{n}{1}^{2}+\binom{n}{2}^{2}+\cdots+\binom{n}{n}^{2}=\binom{2 n}{n}
$$

Can you generalize this result?
(2) (a) Write down a generating function that has the coefficient of q^{r} equal to

$$
\sum_{k=0}^{m}\binom{m}{k}\binom{n}{r-k}
$$

(b) Prove that

$$
\sum_{k=0}^{m}\binom{m}{k}\binom{n}{r-k}=\binom{m+n}{r}
$$

(3) See "Number Theory" p. 7 \#8
(a) Write down a generating function such that the coefficient of $q^{2 n-1}$ is $F_{2 n}$ and the coefficient of $q^{2 n}$ is 0 .
(b) Write down a generating function such that the coefficient of $q^{2 n}$ is $F_{2 n+1}$ and the coefficient of $q^{2 n+1}$ is 0 .
(c) Is there an algebraic relation between these two expressions?
(d) Prove

$$
F_{1}+F_{3}+F_{5}+\cdots+F_{2 n-1}=F_{2 n}
$$

(4) See "Number Theory" p. 7 \# 9
(a) Write down a generating function such that the coefficient of $q^{2 n}$ is $F_{2 n+1}$ and the coefficient of $q^{2 n+1}$ is 0 .
(b) Subtract the generating function for $1+q^{2}+q^{4}+q^{6}+\cdots$.
(c) Is there a relationship between this generating function and the one for the generating function such that the coefficient of $q^{2 n-1}$ is $F_{2 n}$ and the coefficient of $q^{2 n}$ is 0 ?
(d) Prove

$$
F_{2}+F_{4}+F_{6}+\cdots+F_{2 n}=F_{2 n+1}-1
$$

(5) See "Number Theory" p. 7 \#10.
(a) Give a generating function for F_{n+1}^{2}.
(b) Give a generating function for $F_{n+1} F_{n+3}$.
(c) Prove

$$
F_{n+2}^{2}-F_{n+1} F_{n+3}=(-1)^{n+1}
$$

(6) See "Number Theory" p. 7 \#11 and \#12.
(a) Give the generating function for $F_{n+1} F_{n+2}$.
(b) Give the generating function for $F_{1} F_{2}+F_{2} F_{3}+F_{3} F_{4}+\cdots+F_{n+1} F_{n+2}$
(c) Give the generating function for $F_{2 n}^{2}$.
(d) Find a relationship between the two functions and show:

$$
F_{1} F_{2}+F_{2} F_{3}+F_{3} F_{4}+\cdots+F_{2 n-1} F_{2 n}=F_{2 n}^{2}
$$

and

$$
F_{1} F_{2}+F_{2} F_{3}+F_{3} F_{4}+\cdots+F_{2 n} F_{2 n+1}=F_{2 n+1}^{2}-1
$$

Hint: Try subtracting the generating function $1+q^{2}+q^{4}+q^{6}+\cdots=1 /\left(1-q^{2}\right)$.
(7) See "Number Theory" p. 6 \#6.
(a) Show that the coefficient of q^{n} in $q \frac{d}{d q}(-\ln (1-q) / q)$ has coefficient of q^{n} equal to $\frac{n}{n+1}$.
(b) Show that the coefficient of q^{n} in $((1-q) \ln (1-q)+q) / q$ is $\frac{1}{n(n+1)}$.
(c) Show

$$
\frac{1}{2 \cdot 1}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

Hint (in case you forgot a little calculus) :

$$
q \frac{d}{d q}(-\ln (1-q) / q)=\frac{(1-q) \ln (1-q+q)}{(1-q) q}
$$

