CALCULATING THE PROBABILITIES OF WINNING LOTTO 6/49

VERSION 2: FEBRUARY 19, 2003

The probability of event occuring is a measure of the likelihood that event will occur and is always a value between 0 and 1 (0 means that the event never happens and 1 means that the event happens 100% of the time). The probability of having a ticket with a given property will be equal to the fraction of tickets with that property. That is,
the probability of a win with a certain property $=\frac{\text { the number of tickets which have the property }}{\text { the total number of possible } 6 / 49 \text { tickets }}$
The number of ways of selecting r items from a set of n items is denoted by $\binom{n}{r}=\frac{n!}{r!(n-r)!}$ where $n!$ represents $n \times(n-1) \times(n-2) \times \cdots \times 2 \times 1$.

A $6 / 49$ ticket consists of 6 of numbers between 1 and 49 and since the number of selections of 6 numbers from a set of 49 different numbers is $\binom{49}{6}=13,983,816$, this is equal to the total number of $6 / 49$ tickets. Now to find the probability of winning in each of the prize categories we need only determine how many tickets have a given property.

Winning without the bonus

Of the 6 winning numbers, we must select k of them AND of the 43 non-winning numbers, we must select $(6-k)$ of them. Therefore there are $\binom{6}{k} \times\binom{ 43}{6-k}$ possible winning tickets matching k of the winning numbers.

There is an exception to this in the condition if we insist that the ticket not include the bonus number (e.g. the prize for " 5 of 6 winning numbers and not the bonus" because the tickets with " 5 of 6 winning numbers and the bonus" win a bigger prize). In this case the number of tickets which include k winning numbers AND $6-k$ of the 42 non-winning numbers which are not the bonus will be $\binom{6}{k} \times\binom{ 42}{6-k}$.

Winning with the bonus

The number of tickets which have k winning numbers and the bonus can be found by choosing k of the 6 winning numbers AND the bonus number AND choosing $5-k$ of the 42 non-winning/nonbonus numbers. This means that there are $\binom{6}{k} \times\binom{ 42}{5-k}$ tickets which include exactly k winning numbers and the bonus.

This gives us that the probabilities are calculated as follows:

$$
\text { probability of having all } 6 \text { winning }=\frac{\binom{6}{6}\binom{43}{0}}{\binom{49}{6}}=\frac{1}{\frac{49 \cdot 48 \cdot 47 \cdot 4 \cdot 45 \cdot 44}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 2 \cdot 1}}=\frac{1}{13983816}
$$

probability of having 5 of 6 winning numbers and the bonus $=\frac{\binom{6}{5}\binom{1}{1}}{\binom{49}{6}}=\frac{6}{13983816}=\frac{1}{2330636}$
probability of having 5 of 6 winning numbers and not the bonus $=\frac{\binom{6}{5}\binom{42}{1}}{\binom{49}{6}}=\frac{6 \cdot 42}{13983816} \approx \frac{1}{55491}$
probability of having 4 of 6 winning numbers $=\frac{\binom{6}{4}\binom{43}{2}}{\binom{49}{6}}=\frac{\frac{6 \cdot 5 \cdot 4 \cdot 3}{4 \cdot 3 \cdot 2 \cdot 1} \cdot \frac{43 \cdot 42}{2 \cdot 1}}{13983816} \approx \frac{1}{1033}$
probability of having 3 of 6 winning numbers $=\frac{\binom{6}{3}\binom{43}{3}}{\binom{49}{6}}=\frac{\frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1} \cdot \frac{43 \cdot 42}{2 \cdot 1}}{13983816} \approx \frac{1}{57}$

