HALF A PROOF OF PROBLEM \# 15 ON PAGE 7

FROM CLASS JANUARY 26, 2004

To solve this problem I needed two Lemmas.
This is the problem \# 10 on page 6 . You should be able to solve it without referring to problem \# 15.

Lemma 1.

$$
F_{n+1}^{2}=F_{n+2} F_{n}+(-1)^{n+1}
$$

The following is either another exercise or the definition of L_{n}. I don't have the text at the moment to look it up.

Lemma 2.

$$
L_{n}=F_{n-1}+F_{n+1}
$$

Theorem 1. For all $n \geq 1$,

$$
\begin{gathered}
F_{2 n}=L_{n} F_{n} \\
F_{2 n+1}=F_{n+1} L_{n}+(-1)^{n}
\end{gathered}
$$

Proof. We will prove these two statements by induction simultaneously. They are true for $n=1$ since $F_{2}=1=F_{1} L_{1}$ and $F_{3}=2=F_{2} L_{1}+1$. Now assume that for a fixed n we have $F_{2 n}=L_{n} F_{n}$ and $F_{2 n+1}=F_{n+1} L_{n}+(-1)^{n}$.

Now for all k we have $F_{k}=F_{k-1}+F_{k-2}$ by definition. Therefore,

$$
\begin{array}{rlr}
F_{2 n+2} & =F_{2 n+1}+F_{2 n} & \text { definition of } F_{2 n+2} \\
& =F_{n+1} L_{n}+(-1)^{n}+L_{n} F_{n} & \text { inductive assumtion } \\
& =\left(F_{n+1}+F_{n-1}\right)\left(F_{n+1}+F_{n}\right)+(-1)^{n} & \text { Lemma 2 } \\
& =F_{n+1}^{2}+F_{n+1} F_{n}+F_{n-1} F_{n+1}+F_{n} F_{n-1}+(-1)^{n} & \\
& =F_{n+2} F_{n}+(-1)^{n+1}+F_{n+1} F_{n}+F_{n-1} F_{n+1}+F_{n} F_{n-1}+(-1)^{n} & \text { Lemma 1 } \\
& =F_{n+2} F_{n}+\left(F_{n}+F_{n-1}\right) F_{n}+F_{n-1} F_{n+1}+F_{n} F_{n-1} & \\
& =F_{n+2} F_{n}+F_{n} F_{n}+F_{n+1} F_{n-1}+F_{n} F_{n-1}+F_{n} F_{n-1} & \text { definition of } F_{n+1} \\
& =F_{n+2} F_{n}+F_{n} F_{n}+F_{n+2} F_{n-1}+F_{n} F_{n-1} & \\
& =\left(F_{n+2}+F_{n}\right)\left(F_{n}+F_{n-1}\right) & \text { definition of } F_{n+2} \\
& =L_{n+1} F_{n+1} & \\
\text { Lemma 2 }
\end{array}
$$

Similarly we have

$$
\begin{array}{rlr}
F_{2 n+3} & =F_{2 n+2}+F_{2 n+1} & \text { definition of } F_{2 n+2} \\
& =L_{n+1} F_{n+1}+F_{n+1} L_{n}+(-1)^{n} & \text { inductive assumption and previous result } \\
& =\cdots & \text { fill in the missing proof here } \\
& =F_{n+2} L_{n+1}+(-1)^{n+1} &
\end{array}
$$

