WORKSHEET I: SEQUENCES AND SETS OF OBJECTS

JANUARY 12, 2006

Write the first 6-8 terms of the following sequences. Assume that the sequences start at $n=0$, write a formula for a_{n} if possible (HINT: the empty word is a word of length 0). The OLEIS sequence number can be found by going to the web site 'The On-Line Encyclopedia of Integer Sequences' and entering the first terms which you calculated. It may well be that the sequence that you entered is not in the database. Your next step will be to calculate more terms and try to arrive at a formula for a_{n}. Again, this might not be possible. Speak to me because we might be able to solve this problem together. :
(1) The number of solutions to $x_{1}+x_{2}+x_{3}+x_{4}=n$ with $x_{i} \geq 0$ with x_{4} odd and x_{3} even.
Formula? $a_{n}=\quad$ OLEIS sequence number \qquad
(2) The number of solutions to $x_{1}+x_{2}+x_{3}+x_{4}=n$ with $i \geq x_{i} \geq 0$ with x_{4} even and x_{3} even.
Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(3) The number of words of length n created with the letters a and b such that no a is adjacent to a b.
Formula? $a_{n}=\ldots$ OLEIS sequence number \qquad
(4) The number of words of length n created with the letters a and b such that every a is separated by at least two b 's.
Formula? $a_{n}=\ldots$ OLEIS sequence number \qquad
(5) The number of words of length n created with the letters a and b such that every a is separated by at least three b 's.
Formula? $a_{n}=$ \qquad
\qquad
(6) The number of words of length n created with the letters a, b, c with at least half of the letters are a 's. \qquad
Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(7) The number of words of length n created with the letters a, b, c with no consecutive letters being equal.
Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(8) The number of words of length n created with the letters $a, \overline{b, c \text { with all } c \text { 's appearing after }}$ all of the b 's.
Formula? $a_{n}=\quad$ OLEIS sequence number \qquad
(9) The number of words of length n created with the letters a, b, c with at least as many a 's as b 's and at least as many b 's as c 's.
Formula? $a_{n}=\quad$ OLEIS sequence number \qquad
(10) The number of words of length n created with the letters a, b, c with every b adjacent to at least one c.
Formula? $a_{n}=$
\qquad
\qquad OLEIS sequence number \qquad
(11) The number of words of length n created with the letters a, b, c with every b adjacent to at least one c and one a. Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(12) The number of words of length n created with the letters a, b, c with every c not adjacent to any as. Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(13) The number of words of length n created with the letters $\overline{a, b, c \text { with every } b \text { occurring in }}$ groups of two or more.
Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(14) The number of words of length n created with the letters a, b, c with no adjacent $b \mathrm{~s}$.

Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(15) The number of words of length n created with the letters a, b, c with every a and every b adjacent to at least one c. \qquad
Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(16) The number of words of length n created with the letters a, b, c with every b separated from every c by at least one a. Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(17) The number of words of length n created with the letters a, b, c with every b separated from every c by at least two a.
Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(18) The number of words of length n created with the letters a, b, c with more c s than either as or $b \mathrm{~s}$.
Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(19) The number of words of length n created with the letters a, b, c with more $c s$ than the number of a s and $b \mathrm{~s}$ put together.
Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(20) The number of words of length n created with the letters a, b, c with more $c s$ than $b s$ and more $b \mathrm{~s}$ than a. \qquad
Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad

