WORKSHEET VI: COMBINATORIAL PROBLEMS AND GENERATING FUNCTIONS

MARCH 2, 2006

On the Forum, call these "GF COUNTING PROBLEM #xxx"

Translate the following combinatorial problems depending on the unknown n into generating functions expressions in the variable q. Use a computer or other means to find the specified coefficient.

- (1) The number of ways are there of distributing n identical jelly beans among four children:
 - (a) without restriction
 - (b) With one child getting at least 10 jelly beans and another child getting at most 10 jelly beans.

Coefficient of q^{40} .

- (2) The number of integer solutions to $x_1 + x_2 + x_3 + x_4 + x_5 = n$ with
 - (a) $x_i \ge 0$
 - (b) $x_i > 0$

(c) $x_i \ge i$ (for each i = 1, 2, 3, 4, 5) Coefficient of q^{28} .

- (3) The number of integer solutions to $x_1 + x_2 + x_3 + x_4 + x_5 \le n$ with $x_i \ge 0$. (hint: build on problem (2) (a)) Coefficient of q^{28} .
- (4) The number of integer solutions to $x_1 + x_2 + x_3 + x_4 + x_5 = m$ with $m \le n$ and $m \equiv n \pmod{2}$ and with $x_i \ge 0$. (hint: build on problem (2) (a)) Coefficient of q^{28} .
- (5) The number of ways to distribute identical balls into n distinct boxes. Coefficient of q^k .
- (6) The number of ways to distribute n identical balls into 6 boxes with the first two boxes collectively having at most four balls. Coefficient of q⁸.
- (7) How many ways are there of making change for n cents in
 - (a) 1952 pennies, 1959 pennies and 1964 nickles?
 - (b) 1952 pennies, 1959 pennies, 1964 nickles, and 1971 quarters? Coefficient of q^{35} .
- (8) The number of selections of n marbles from a group of 5 reds, 4 blues. Coefficient of q^7 .
- (9) The number of selections of n marbles from a group of 24 reds, 19 blues. Coefficient of q^{30} .
- (10) The number of selections of n marbles from a group of 5 reds, 4 blues, and 2 pinks. Coefficient of q^5 .
- (11) The number of selections of n marbles from a group of 20 reds, 35 blues, and 33 pinks. Coefficient of q^{50} .
- (12) Selections of n apples from 4 types with at least 2 apples of each type. Coefficient of q^{12} .

MARCH 2, 2006

- (13) Selections of n jelly beans from 4 different types with an even number of each type and not more than 8 of any one type. Coefficient of q^{20} .
- (14) Distributions of n black chips into 5 distinct boxes. Coefficient of a^{30} .
- (15) Distributions of n red balls into 6 distinct boxes with at least 2 balls in each box. Coefficient of q^{18} .
- (16) Distributions of n markers into 4 distinct boxes with the same number of markers in the first and second boxes. Coefficient of q^{20} .
- (17) The number of election outcomes if there are 3 candidates and n voters. If in addition, one of the three candidates receives at least 15 votes, how does your answer change? Coefficient q^{30} .
- (18) The number of election outcomes in the race for class president are there if there are 5 candidates and n students in the class and
 - (a) Every candidate receives at least two votes.
 - (b) One candidate receives at most one vote and all the other receive at least two votes.
 - (c) No candidate receives more than 20 votes.
 - (d) Exactly three of the candidates have the same number of votes and they have at least 10 each.

Coefficient of q^{40} .

- (19) The number of numbers between 0 and 9,999 (inclusive). that thave a sum of digits
 - (a) equal to n.
 - (b) less than or equal to n.
 - Coefficient of q^7 .
- (20) The number of integer solutions are there to the equation $x_1 + x_2 + x_3 + x_4 \le n$ with $x_i \ge i$. Coefficient of q^{55} .
- (21) The number of non-negative integer solutions to the equation $2x_1 + 2x_2 + x_3 + x_4 = n$. Coefficient of q^{12} .

(22) The number of non-negative integer solutions to $x_1 + x_2 + x_3 + x_4 + x_5 = n$ with (a) $x_i \leq 10$

- (b) $x_1 = 2x_2$
- Coefficient of q^{20}
- (23) The number of ways of distributing n oranges in 3 different boxes such that there are at most 8 oranges in each box. Coefficient of q^{15} .
- (24) Create a generating function in two variables x and q with $\sum_{n\geq 0,m\geq 0} a_{n,m}q^n x^m$ for the numbers $a_{n,m}$ which are the number of ways of distributing r identical objects in n distinct boxes so that exactly m boxes are empty.