WORKSHEET II : SEQUENCES AND SETS OF OBJECTS

JANUARY 26, 2005

Say that $a_{0}, a_{1}, a_{2}, \ldots$ is a sequence of non-negative integers where a_{n} represents the number of "widgets of size n." Assume similarly that b_{n} represents the number of "doodles of size n." Below are a list of algebraic expressions labeled 1 through 15 and another list of combinatorial descriptions labeled (a) through (1). Match each one of the algebraic expressions with the combinatorial description. Here is the tough part: three of the equations do not have a combinatorial description. Write one for each of those.

```
(1) \(a_{n}+b_{n}\)
(2) \(a_{n}+b_{m}\)
(3) \(\binom{n}{k} a_{n}\)
(4) \(\binom{n}{0} a_{0}+\binom{n}{1} a_{1}+\cdots\binom{n}{n-1} a_{n-1}+\binom{n}{n} a_{n}\)
(5) \(a_{0}+a_{1}+a_{2}+\cdots+a_{n}\)
(6) \(a_{1}+2 a_{2}+3 a_{3}+\cdots n a_{n}\)
(7) \(a_{n} b_{n}\)
(8) \(a_{n}^{2}\)
(9) \(a_{1} a_{2} \cdots a_{n-1} a_{n}\)
(10) \(a_{0} b_{n}+a_{1} b_{n-1}+\cdots+a_{n} b_{0}\)
(11) \(a_{0} b_{0}+a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}\)
(12) \(\binom{n}{0} a_{n} b_{0}+\binom{n}{1} a_{n-1} b_{1}+\cdots+\binom{n}{n-1} a_{1} b_{n-1}+\binom{n}{n} a_{0} b_{n}\)
(13) \(n a_{n}\)
(14) \(a_{n}+a_{n-2}+\cdots+a_{n} \bmod 2\)
(15) \(n a_{0}+(n-1) a_{1}+\cdots+a_{n-1}\)
```

(a) Sequences of length n where the $k^{t h}$ element of the sequence is a widget of size k.
(b) A pair consisting of one widget and one doodle, both of the same size and each of size less than or equal to n.
(c) A pair whose first element is a widget of size n and whose second element is a doodle of the same size.
(d) A pair consisting of a subset of the numbers 1 through n and a widget which is the same size as the subset.
(e) The number of widgets such that the size of the widget plus n is even.
(f) An pair which is either a widget of size n and the number 1 or it is a doodle of size n and the number 2.
(g) A pair whose first element is a subset of the integers 1 through n of size k and whose second element is a widget of size n.
(h) A pair consisting of two widgets both of the same size and both of size n.
(i) A pair consisting of a positive integer k and a widget such that the size of the widget plus the integer is less than or equal to n.
(j) A pair consisting of a widget and a doodle such that the size of the widget plus the size of the doodle is n.
(k) A triple consisting of a widget and a doodle and a subset of the integers 1 through n such that the widget and the subset are of the same size and the size of the widget plus the size of the doodle must be n.
(l) A pair consisting of a doodle whose size is less than or equal to n and an integer between 1 and the size of the doodle.

