COMBINATORIAL PROBLEMS AND GENERATING FUNCTIONS

FEBRUARY 4, 2010

In each of the following problems the parameter n will be specified. You should write down a generating function for the number of the specified quantity for all n by translating the following combinatorial problems depending on the unknown n into generating functions expressions in a variable q. Use a computer or other means to find the specified coefficient (we will do more exercises soon where we learn to take coefficients without using a computer).

- (1) The number of ways are there of distributing n = 40 identical jelly beans among four children:
 - (a) without restriction
 - (b) with all children getting an odd number of jelly beans
 - (c) with one child getting at least 10 jelly beans and another child getting at most 10 jelly beans.
 - (d) with one child getting an even number of jelly beans and another child getting at most 20 jelly beans
- (2) How many ways are there of distributing n = 10 loonies amongst 6 people
 - (a) without restriction
 - (b) such that each person receives at least 1 loonie
 - (c) such that the first two people receive the same number of loonies
 - (d) such that the first two people receive at most 6 loonies
- (3) The number of integer solutions to $x_1 + x_2 + x_3 + x_4 + x_5 = n = 36$ with
 - (a) $x_i \geq 0$
 - (b) $x_i > 0$
 - (c) $x_i \ge i$ (for each i = 1, 2, 3, 4, 5)
 - (d) with $x_i \ge 0$ and x_1 and x_2 even and x_4 and x_5 odd.
- (4) The number of ways to distribute n = 14 identical balls into 6 boxes
 - (a) with the first two boxes having at least two balls each
 - (b) with the first box having *at most* four balls
 - (c) with the first two boxes collectively having at most four balls.
 - (d) with the first three boxes having at most three balls.
- (5) How many ways are there of making change for n = 78 cents in
 - (a) pennies and nickels
 - (b) pennies, nickels, and dimes
 - (c) pennies, nickels, dimes and quarters
 - (d) pennies, nickels, dimes and quarters with at least one of each
- (6) The number of election outcomes in the race for class president are there if there are 5 candidates and n = 75 students in the class and
 - (a) Every candidate receives at least two votes.
 - (b) One candidate receives at most one vote and all the other receive at least two votes.
 - (c) No candidate receives more than 20 votes.
 - (d) Exactly three of the candidates have the same number of votes and they have at least 10 each.

FEBRUARY 4, 2010

- (7) How many ways are there of choosing n = 10 coins from an unlimited supply of pennies, nickels, dimes and quarters.
 - (a) without restriction
 - (b) the number of pennies is equal to the number of nickels
 - (c) there are more pennies than there are nickels
 - (d) the number of pennies plus the number of nickels is odd
- (8) The number of non-negative integer solutions to the equation $x_1 + 2x_2 + 3x_3 + 4x_4 = n = 20$.
 - (a) with $x_i \ge 0$
 - (b) with $x_i \ge 0$ and $x_1 \le 6$
 - (c) with $4 \ge x_i \ge 0$
 - (d) with $x_i \ge i$
 - (e) with $4i \ge x_i \ge i$
- (9) The number of selections of n = 50 marbles from a group of
 - (a) 20 reds, 35 blues, and 33 pinks.
 - (b) 30 reds, 24 blues and as many greens as you can get.
 - (c) 20 reds, any number of blues and greens
 - (d) 20 reds, any number of blues and greens but you must select an even number of blues
 - (e) 20 reds, as many blues and greens as you need, but the number of blues + the number of greens is even
- (10) The number of numbers between 0 and 9,999 (inclusive) that have
 - (a) a sum of digits equal to n = 8?
 - (b) a sum of digits less than or equal to n = 8?
- (11) The number of non-negative integer solutions to $x_1 + x_2 + x_3 + x_4 + x_5 = n = 20$ with
 - (a) $x_i \le 10$
 - (b) $x_1 = 2x_2$
 - (c) $x_1 \le 10$
 - (d) $x_1 + x_2 \le 10$
- (12) How many ways are there of distributing n = 10 loonies amongst 6 people (a) such that the first three people receive 6 loonies in total
- (13) The number of integer solutions to $x_1 + x_2 + x_3 + x_4 + x_5 = n = 36$ with
 - (a) with $x_i \ge i$ and x_1 and x_2 even and x_4 and x_5 odd.
- (14) How many ways are there of making change for n = 78 cents in
 - (a) Canadian pennies and nickels and U.S. pennies and nickels
 - (b) Canadian or U.S. pennies, nickels, dimes and quarters
- (15) How many ways are there of rolling 12 different colored (and hence distinguished) six-sided dice so that the sum is n = 36.
 - (a) no other restriction
 - (b) exactly half are odd and half are even
 - (c) (challenge) so that exactly 3 different values are showing
- (16) How many ways are there of placing n = 30 indistinguishable balls in 10 boxes so that
 - (a) with no restriction
 - (b) the first 4 boxes have at most 10 of the balls.
 - (c) first 4 boxes have at least half of the balls