SOME FIBBONACCI GENERATING FUNCTIONS

JANUARY 21, 2008

The following problems are all connected. Build up the library of generating functions you know by solving for the generating functions in the exercises below.

Recall
$$F(q) = \sum_{n \ge 0} F_{n+1}q^n = \frac{1}{1-q-q^2}$$
 and $L(q) = \sum_{n \ge 0} L_{n+1}q^n = \frac{1+2q}{1-q-q^2}$

- (1) (a) Use the fact that (A(q) + A(-q))/2 = ∑_{n≥0} a_{2n}q²ⁿ to give a generating function for the odd Fibbonacci numbers F_{odd}(q) = ∑_{n≥0} F_{2n+1}qⁿ.
 (b) Use the fact that (A(q) A(-q))/2 = ∑_{n≥0} a_{2n+1}q²ⁿ⁺¹ to give a generating function
 - for the even Fibbonacci numbers $F_{even}(q) = \sum_{n \ge 0} F_{2n+2}q^n$.
- (2) Use the same tricks to find the generating functions for the even and odd Lucas numbers, $L_{odd}(q) = \sum_{n \ge 0} L_{2n+1}q^n$ and $L_{even}(q) = \sum_{n \ge 0} L_{2n+2}q^n$.
- (3) (a) Use the following set of three formulas:

$$F_n^2 = F_n(F_{n-1} + F_{n-2}) = F_n F_{n-1} + F_n F_{n-2}$$

$$F_n F_{n+1} = F_n(F_n + F_{n-1}) = F_n^2 + F_n F_{n-1}$$

$$F_{n+2} F_n = F_n(F_{n+1} + F_n) = F_{n+1} F_n + F_n^2$$

to write down three equations with the generating functions $D^{(0)}(q) = \sum_{n>0} F_{n+1}^2 q^n$, $D^{(1)}(q) = \sum_{n\geq 0} F_{n+1}F_{n+2}q^n, \ D^{(2)}(q) = \sum_{n\geq 0} F_{n+1}F_{n+3}q^n.$ Use those equations to solve for $D^{(0)}(q)$, $D^{(1)}(q)$, $D^{(2)}(q)$.

- (b) Find a formula for $D^{(3)}(q) = \sum_{n\geq 0} F_{n+1}F_{n+4}q^n$ by replacing $F_{n+4} = F_{n+3} + F_{n+2}$ and expressing it in terms of $D^{(2)}(q)$ and $D^{(1)}(q)$.
- (4) (a) The Lucas number satisfy the same recurrence as the Fibbonaci numbers from the previous problem. Use the same technique to find formulas for $E^{(0)}(q) = \sum_{n>0} L_{n+1}^2 q^n$, $E^{(1)}(q) = \sum_{n \ge 0} L_{n+1} L_{n+2} q^n, \ E^{(2)}(q) = \sum_{n \ge 0} L_{n+1} L_{n+3} q^n.$
 - (b) Find a formula for $E^{(3)}(q) = \sum_{n\geq 0} L_{n+1}L_{n+4}q^n$ by replacing $L_{n+4} = L_{n+3} + L_{n+2}$ and expressing it in terms of $E^{(2)}(q)$ and $E^{(1)}(q)$.
- (5) (a) Use the results of the previous problems and the fact that $L_n = F_{n+1} + F_{n-1}$ for $n \ge 2$ to give a formula for the generating function $M^{(0)}(q) = \sum_{n>0} F_{n+1}L_{n+1}q^n$.
 - (b) Use the generating functions $D^{(0)}(q)$, $D^{(1)}(q)$, $D^{(2)}(q)$ to give a formula for the generating function $M^{(1)}(q) = \sum_{n>0} F_{n+2} L_{n+1} q^n$.
 - (c) Use the previous two problems and the fact that $L_{n+2} = L_{n+1} + L_n$ to find a formula for the generating function $M^{(-1)}(q) = \sum_{n>0} F_{n+1}L_{n+2}q^n$
- (6) (a) Find a formula for $F_{evensqr}(q) = \sum_{n>0} F_{2n+2}^2 q^n$.
 - (b) Find a formula for $F_{oddsqr}(q) = \sum_{n>0} F_{2n+1}^2 q^n$.

Record your answers below:

$$\begin{split} F_{odd}(q) &= 1 + 2q + 5q^2 + 13q^3 + 34q^4 + \dots = \sum_{n\geq 0} F_{2n+1}q^n = \\ F_{even}(q) &= 1 + 3q + 8q^2 + 21q^3 + 55q^4 + \dots = \sum_{n\geq 0} F_{2n+2}q^n = \\ L_{odd}(q) &= 2 + 3q + 7q^2 + 18q^3 + 47q^4 + \dots = \sum_{n\geq 0} L_{2n+1}q^n = \\ L_{even}(q) &= 1 + 4q + 11q^2 + 29q^3 + 76q^4 + \dots = \sum_{n\geq 0} L_{2n+2}q^n = \\ D^{(0)}(q) &= 1 + q + 4q^2 + 9q^3 + 25q^4 + \dots = \sum_{n\geq 0} F_{n+1}^2 F_{n+1}q^n = \\ D^{(1)}(q) &= 1 + 2q + 6q^2 + 15q^3 + 40q^4 + \dots = \sum_{n\geq 0} F_{n+2}F_{n+1}q^n = \\ D^{(2)}(q) &= 2 + 3q + 10q^2 + 24q^3 + 65q^4 + \dots = \sum_{n\geq 0} F_{n+3}F_{n+1}q^n = \\ D^{(3)}(q) &= 3 + 5q + 16q^2 + 39q^3 + 105q^4 + \dots = \sum_{n\geq 0} F_{n+4}F_{n+1}q^n = \\ E^{(0)}(q) &= 4 + q + 9q^2 + 16q^3 + 49q^4 + \dots = \sum_{n\geq 0} L_{n+4}^2 L_{n+1}q^n = \\ E^{(2)}(q) &= 6 + 4q + 21q^2 + 28q^3 + 77q^4 + \dots = \sum_{n\geq 0} L_{n+3}L_{n+1}q^n = \\ E^{(3)}(q) &= 8 + 7q + 33q^2 + 72q^3 + 203q^4 + \dots = \sum_{n\geq 0} L_{n+4}L_{n+1}q^n = \\ M^{(0)}(q) &= 1 + 3q + 8q^2 + 21q^3 + 55q^4 + \dots = \sum_{n\geq 0} F_{n+1}L_{n+1}q^n = \\ M^{(1)}(q) &= 1 + 6q + 12q^2 + 35q^3 + 88q^4 + \dots = \sum_{n\geq 0} F_{n+1}L_{n+1}q^n = \\ M^{(-1)}(q) &= 3 + 4q + 14q^2 + 33q^3 + 90q^4 + \dots = \sum_{n\geq 0} F_{n+1}L_{n+2}q^n = \\ F_{evensqr}(q) &= 1 + 9q^2 + 64q^2 + 441q^3 + 3025q^4 + \dots = \sum_{n\geq 0} F_{n+1}L_{n+2}q^n = \\ F_{oddsqr}(q) &= 1 + 4q^2 + 25q^2 + 169q^3 + 1156q^4 + \dots = \sum_{n\geq 0} F_{n+1}L_{n+2}q^n = \\ F_{n+1}C_{n+1}q^n &= E_{n+1}C_{n+1}q^n = E_{n+1}C_{n+1}q^n = E_{n+1}C_{n+1}q^n = E_{n+1}C_{n+1}q^n = \\ F_{n+1}C_{n+1}q^n &= E_{n+1}C_{n+1}q^n = E_{n+1}C_{n+$$

$$F_1 = 1, F_2 = 1, F_3 = 2, F_4 = 3, F_5 = 5, F_6 = 8, F_7 = 13, F_8 = 21, F_9 = 34, F_{10} = 55$$

 $L_1 = 2, L_2 = 1, L_3 = 3, L_4 = 4, L_5 = 7, L_6 = 11, L_7 = 18, L_8 = 29, L_9 = 47, L_{10} = 76$

Using the equations that you found above, find a generating function proof of the following identities for $n \ge 0$:

(1)

(2)
$$F_1F_2 + F_2F_3 + F_3F_4 + \dots + F_{2n+1}F_{2n+2} = F_{2n+2}^2$$

(3)
$$F_1^2 + F_2^2 + F_3^2 + \dots + F_n^2 = F_{n+1}F_{n+2}$$

(4)
$$F_1 + F_3 + F_5 + \dots + F_{2n+1} = F_{2n+2}$$

(5)
$$F_1F_2 + F_2F_3 + F_3F_4 + \dots + F_{2n+2}F_{2n+3} = F_{2n+3}^2 - 1$$

$$F_{n+1}L_{n+1} = F_{2n+2}$$

(6)
$$F_{n+2}^2 + 2F_{n+1}F_{n+2} = F_{2n+4}$$

(7)
$$F_{n+3}^2 - F_{n+1}^2 = F_{2n+4}$$

(8)

$$F_{n+2}^2 = F_{n+1}F_{n+3} + (-1)^{n+1}$$
(9)

(10)
$$F_{n+2}F_{n+3} = F_{n+1}F_{n+4} + (-1)^{n-1}$$

(11)
$$F_{n+2}L_{n+2} + F_{n+1}L_{n+1} = L_{2n+3}$$

(12)
$$F_{n+2}L_{n+2} - F_{n+1}L_{n+1} = F_{2n+3}$$

(13)
$$5(F_{n+1}^2 + F_{n+2}^2) = L_{n+1}^2 + L_{n+2}^2$$

(14)
$$5F_{n+1}^2 - L_{n+1}^2 = 4(-1)^n$$

(15)
$$L_{n+1}^2 - 2L_{2n+2} = -5F_n^2$$

(16)
$$F_{n+4} - F_{n+1} = 2F_{n+2}$$

(17)
$$F_{n+4} + F_{n+1} = 2F_{n+3}$$

$$F_{n+5} + F_{n+1} = 3F_{n+3}$$

(18)
$$F_{n+5} - F_{n+1} = L_{n+3}$$