For binomials, take as definition $\binom{n}{k}=\frac{n!}{k!(n-k)!}$. Note that this definition only works then for n an integer, for a more general definition where n may be any real number but k non-negative integer, $\binom{n}{k}=\frac{n(n-1)(n-2) \cdots(n-k+1)}{k!}$. Then you may want use the identity that $\binom{n}{k}+\binom{n}{k-1}=\binom{n+1}{k}$ for the induction steps.

For any problems involving the Fibbonacci numbers, take as definition $F_{-1}=F_{0}=0, F_{1}=1$, $F_{2}=1$ and $F_{n+1}=F_{n}+F_{n-1}$ for $n \geq 1$.

$$
\begin{equation*}
F_{1} F_{2}+F_{2} F_{3}+F_{3} F_{4}+\cdots+F_{2 n-1} F_{2 n}=F_{2 n}^{2} \tag{1}
\end{equation*}
$$

(2) Using the recursive definition of F_{n}, show that for $n \geq 2$,

$$
F_{n+1}^{2}=F_{n+1} F_{n}+F_{n+1} F_{n-1}
$$

(3) Show that

$$
\frac{1}{2 n} \leq \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots(2 n)}
$$

(4) Show that for $n \geq 1$

$$
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}} \leq 2 \sqrt{n}-1
$$

(5) Show that for $n>0$,

$$
1^{3}+3^{3}+5^{3}+\cdots+(2 n-1)^{3}=n^{2}\left(2 n^{2}-1\right)
$$

(6) Show that postage stamps of value 5 cents and 9 cents are sufficient to post any letter requiring more than 31 cents in postage.
(7) If n is any integer such that $n>4$, then

$$
n^{2}<2^{n}<n!
$$

(8) Show that

$$
\frac{1}{1 \cdot 5}+\frac{1}{5 \cdot 9}+\cdots+\frac{1}{(4 n-3)(4 n+1)}=\frac{n}{4 n+1}
$$

(9) Show that for n an integer and θ any real number we have

$$
(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta
$$

(10) Show that for $n, r \geq 0$,

$$
\binom{n}{0}\binom{n}{r}+\binom{n}{1}\binom{n}{r+1}+\binom{n}{2}\binom{n}{r+2}+\cdots+\binom{n}{n-r}\binom{n}{n}=\binom{2 n}{n+r}
$$

(11) Show that

$$
1+2\binom{n}{1}+3\binom{n}{2}+\cdots+(k+1)\binom{n}{k}+\cdots+(n+1)\binom{n}{n}=(n+2) 2^{n-1}
$$

(12) Let $a_{n}^{(5)}$ be the number of points in $n^{\text {th }}$ diagram of the sequence of drawings of nested pentagons shown below. Show that $a_{n}^{(5)}=\frac{3 n^{2}-n}{2}$.

(13) Show by induction on m, n or r that

$$
\sum_{k=0}^{m}\binom{m}{k}\binom{n}{r+k}=\binom{m+n}{m+r}
$$

(14) Show for $n \geq 0$,

$$
\binom{n}{0} F_{1}+\binom{n}{1} F_{2}+\binom{n}{2} F_{3}+\cdots+\binom{n}{n} F_{n+1}=F_{2 n+1}
$$

(15) Show that for $n \geq 1$,

$$
\binom{n}{0}+\binom{n-1}{1}+\binom{n-2}{2}+\cdots+\binom{n-\lfloor n / 2\rfloor}{\lfloor n / 2\rfloor}=F_{n+1}
$$

The notation $\lfloor x\rfloor$ represents the largest integer less than x.
(16) Show that any positive integer n can be uniquely represented in the form

$$
c_{1} 1!+c_{2} 2!+c_{3} 3!+\cdots+c_{k} k!
$$

for some positive integer k where $c_{k} \neq 0$ and $0 \leq c_{i} \leq i$ for all $i=1,2, \ldots, k$.
(17) Show that any integer n can be uniquely represented in the form

$$
r_{0} 3^{0}+r_{1} 3^{1}+r_{2} 3^{2}+\cdots+r_{k} 3^{k}
$$

for some positive integer k where $r_{k} \neq 0$ and $r_{i} \in\{-1,0,1\}$ for all $i=1,2, \ldots, k$.
(18) Show that $F_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n}-\bar{\phi}^{n}\right)$ where $\phi=\frac{1+\sqrt{5}}{2}$ and $\bar{\phi}=\frac{1-\sqrt{5}}{2}$.
(19) Show that for all $n \geq 0$,

$$
\binom{r-1}{0}\binom{r}{1}+\binom{r-1}{1}\binom{r}{2}+\cdots+\binom{r-1}{r-1}\binom{r}{r}=\binom{4 r-1}{2 r}
$$

$$
\begin{equation*}
F_{1}+F_{3}+F_{5}+\cdots+F_{2 n-1}=F_{2 n} \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
F_{1} F_{2}+F_{2} F_{3}+F_{3} F_{4}+\cdots+F_{2 n} F_{2 n+1}=F_{2 n+1}^{2}-1 \tag{21}
\end{equation*}
$$

(22) Show that for $n \geq 0$,

$$
\left(\frac{1+\sqrt{5}}{2}\right)^{n}=F_{n+1}+F_{n}\left(\frac{1-\sqrt{5}}{2}\right)
$$

(23) Show that for $n \geq 1$,

$$
F_{n} F_{n+1}=F_{n-1} F_{n+2}+(-1)^{n-1}
$$

(24) Show that for $n \geq 0$,

$$
F_{n+1}^{2}-F_{n} F_{n+2}=(-1)^{n+1}
$$

