Some computational problems in number theory

March 1, 2012

(1) Say that I have a $2 x 2$ matrix of the form:

$$
A=\left[\begin{array}{ll}
3 & * \\
* & *
\end{array}\right]
$$

I don't know the matrix itself, but I do know that $\operatorname{det}(A) \equiv 17(\bmod 26)$ and I also know that

$$
A\left[\begin{array}{c}
5 \\
19
\end{array}\right] \equiv\left[\begin{array}{l}
6 \\
9
\end{array}\right](\bmod 26)
$$

Find the matrix A.
(2) In divising the RSA system you choose a public modulus $m=1081=23 \cdot 47$ and an encrypting exponent of 73 . Find the decrypting exponent.
(3) Calculate the Euler phi function of 864864 . Use it to calculate

$$
5^{207366}(\bmod 864864)
$$

(4) (a) Compute $J(13,4819)$
(b) Compute $13^{2409}(\bmod 4819)\left(\right.$ hint: $\left.13^{29} \equiv 1(\bmod 4819)\right)$
(c) What do the results of the last two computations tell us about the primality of 2409 ?

The next two problems require a computer
(5) Find the next prime greater than or equal to

$$
n=10298374509348573904587390458732094587230495872309458723094573097
$$

by testing if $a^{(n-1) / 2} \equiv \pm 1(\bmod n)$ for some values of a until you find a potential pseudo-prime and then convincing yourself that it is prime by checking if $J(a, n)=a^{(n-1) / 2}$ for at least 10 values of a.
(6) Say that your public modulus is:

$$
\begin{aligned}
& m=9194050360213907115693366285304915215520274629853449561 \\
& =(9834710928479123480819)(934857203945872304958723049606019)
\end{aligned}
$$

and nobody else knows how your number factors. You also publish your public key to be:

$$
3487192837645198273462939
$$

which you choose at random so that it is relatively prime to $\phi(m)$. I send you the message 6001342142960307577337651863901327138891060326454897797 , what does it say?

If you happen to be using Maple, I ran into trouble last week with the ipowermod function. I don't know what it is called. Here is the function that you can hopefully copy and paste.

```
ipowermod:=proc(a,b,n) local x;
if b<0 then return ipowermod(a,-b,n)^(-1) mod n;
elif b=0 then return 1;
elif b=1 then return a mod n;
elif b mod 2=0 then x:=ipowermod(a,b/2,n); return x^2 mod n;
else return a*ipowermod(a,b-1,n) mod n;
end;
end:
```

