Some computational problems in number theory March 1, 2012

(1) Say that I have a $2x^2$ matrix of the form:

$$A = \begin{bmatrix} 3 & * \\ * & * \end{bmatrix}$$

I don't know the matrix itself, but I do know that $det(A) \equiv 17 \pmod{26}$ and I also know that

$$A\begin{bmatrix}5\\19\end{bmatrix} \equiv \begin{bmatrix}6\\9\end{bmatrix} \pmod{26}.$$

Find the matrix A.

- (2) In divising the RSA system you choose a public modulus $m = 1081 = 23 \cdot 47$ and an encrypting exponent of 73. Find the decrypting exponent.
- (3) Calculate the Euler phi function of 864864. Use it to calculate

 $5^{207366} \pmod{864864}$

- (4) (a) Compute J(13, 4819)
 - (b) Compute $13^{2409} \pmod{4819}$ (hint: $13^{29} \equiv 1 \pmod{4819}$)
 - (c) What do the results of the last two computations tell us about the primality of 2409?

The next two problems require a computer

(5) Find the next prime greater than or equal to

n = 1029837450934857390458739045873209458723049587230945872309458723094573097

by testing if $a^{(n-1)/2} \equiv \pm 1 \pmod{n}$ for some values of a until you find a potential pseudo-prime and then convincing yourself that it is prime by checking if $J(a, n) = a^{(n-1)/2}$ for at least 10 values of a. (6) Say that your public modulus is:

m = 9194050360213907115693366285304915215520274629853449561

= (9834710928479123480819)(934857203945872304958723049606019)

and nobody else knows how your number factors. You also publish your public key to be:

3487192837645198273462939

which you choose at random so that it is relatively prime to $\phi(m)$. I send you the message 6001342142960307577337651863901327138891060326454897797, what does it say?

If you happen to be using Maple, I ran into trouble last week with the ipowermod function. I don't know what it is called. Here is the function that you can hopefully copy and paste.

```
ipowermod:=proc(a,b,n) local x;
if b<0 then return ipowermod(a,-b,n)^(-1) mod n;
elif b=0 then return 1;
elif b=1 then return a mod n;
elif b mod 2=0 then x:=ipowermod(a,b/2,n); return x<sup>2</sup> mod n;
else return a*ipowermod(a,b-1,n) mod n;
end;
end:
```