UNEXAM \#2

ASSIGNED: JANUARY 26, 2012 DUE: FEBRUARY 9, 2012
Remember that the important aspect of this assignment is not the answer, but the solution. I am looking for a simple, clear, thoughtful, direct, short explanation.
(1) What is the generating function for the number of integral solutions of the equation

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=n
$$

are there where each of the x_{i} are non-negative integers and x_{1} is divisible by 6 ? Note: this is a sequence of numbers dependent on a parameter n. Answer:

$$
\frac{1}{(1-q)^{5}\left(1-q^{6}\right)}
$$

(2) Using generating the generating functions for the Fibonnaci numbers are $F(q)=\frac{1}{1-q-q^{2}}=$ $\sum_{n \geq 0} F_{n+1} q^{n}$ explain why for $n \geq 0$:

$$
F_{n+7}-F_{n+1}=4 F_{n+4}
$$

Answer: Because the generating function for $q^{6} \sum_{n \geq 0} F_{n+7} q^{n}=\frac{1}{1-q-q^{2}}-1-q-2 q^{2}-3 q^{3}-$ $5 q^{4}-8 q^{5}=q^{6} \frac{(13+8 q)}{1-q-q^{2}}$ and the generating function for $q^{3} \sum_{n \geq 0} F_{n+4} q^{n}=\frac{1}{1-q-q^{2}}-1-q-$ $2 q^{2}=q^{3} \frac{(3+2 q)}{1-q-q^{2}}$.

