CHAPTER 2

THE FUNDAMENTAL THEOREM
OF ARITHMETIC

In every branch of mathematics we meet theorems that seem so
natural that, if we held no respect for logical rigor, we would he
tempted to take them for granted, We must prove such theorems care-
fully, not only because they may be crucial in the logical structure of
the theory, but also because every few years some proposition whose
denial has long appeared to he utterly unacceptable to common sense
turns out to he false,

You are now acquainted with one of these important theorems,
the basis representation theorem (Theorem 1-3). This chapter will
culminate in another basic proposition, the fundamental theorem of
arithmetic {Theorem 2-5), from which we shall obtain significant in-
formation about the multiplicative structure of the integers. In passing,
we .:cnn.,..ﬁrm; a certain apparently obvious extension of the theorem
to otHer number-theoretic structures resembling the integers is false
{see Exercide 1 in Section 2-4},

We begin by developing Euclid’s division lemma (Theorem
2-1), by .means of which we shall study the divisibility properties of
integers {(Theorems 2-2 and 2-3), Knowledge of these properties will
enable us to prove the fundamental theorem of arithmetic,

2-1 EUCLID’S DIVISION LEMMA

The division lemma furnishes the foundation for much of number
theory; vet it is simply a rigorous restatement of the well-known fact
that division of one integer by another yields an integral quotient
and an integral nonnegative remainder smaller than the divisor. In
arder to avoid unnecessary complications, we limit ourselves to posi-
tive divisors. The proof we shall give for the lemma relies heavily on
the basis representation theorem.
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THEOREM 2-1 (Euclid’s Division Lemma); For any integers
k (k>0) and j. there exist unique integers g und r such that

0=r<kand

J=gk+r (2-1-1)
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PrROOF: Note that we have simply rewritten a division problem® 3~ @r

in terms of multiplication and addition. In the notation used ahove, j
is the dividend; k, the divisor; g, the quotient; and r, the remainder.

If k=1, r must be zero, so that g=j.

If &k > 1, suppose first that j > 0. (We shall consider the cases in
which j=0 and j < 0 later.) By the basis representation theorem
{Theorem 1-3), j has a unique representation to the base k, say

i=akita kT + . rak+oa,

klak* '+ a, k" 2+ ... +a) + a,

kg +r,

where 0 = v =g, < k. ,
It a second pair ¢* and r' existed, we could find a representation

for ¢' to the base k, say
g ' =bki+...+hk+b,,
s that
j=kg' +r
=Dk bRt bk,

but
J=aktae. k' +. . . +ak+a,

By the uniqueness of the representation of j to the base k, we see that
t=s—1,b,=a,.,, v =a,=r, and thus

g =bk'+...+bk+b,
aks Y.L+ ak+ e,

=yq.

Consequently, the theorem is true for positive values of 5.
Ifj =0, it is easy to verify that g = r = 0 is the only possible solu-
tion of (2-1-1) with 0 = r < k.
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If j <0, then —j = 0, and there exist unigue integers ¢ and
such that

|&q = _Hﬂc____ JT .w._____.

I r"=0. then j=k(~¢”); thus we may take g =—¢” and r=0.
1f " # 0, then

.&.“l\ﬂ@.:] w.____
=ki—¢"— 1)+ {k—7",

and we may take g =—g” ~ 1, and r = k—1,
In either case, ¢ and r satisfy equation (2-1-1). Unigueness for
negative f follows from uniqueness for ~J, which is then positive. W

EXERCISES

1. Without assuming Theorem 2-1, prove that for each pair of
integers j and k(k > 0), there exists some integer g for
which j — gk is positive.

2. The principle of mathematical induction is equivalent to
. the following statement, called the least-integer principle;
Every non-empty set of positive integers has a least
element.
Y
Using the least integer principle, define r to be the least
integer for which j — ¢k is positive {see Exercise 1). Prove
that 0 < r = k.

PR

3. Use Exercise 2 to give a new proof of Theorem 2-1.

4. Any nonempty set of integers J that fulfills the following twa
conditions is called an integral ideal-

(i) if n and m are in J.then n+m and n~ m are in J; and
(ii} if n is in J and r is an integer, then ra is in J.

Let #, be the set of all integers that are integral multiples
of a particular integer m. Prove that Fm 15 an integral ideul.

5. Prove that every integral ideal J is identical with #, for
some m. [Hint: Prove that itJ# {0} =_¢, then there exist
positive integers in J. By the least-integer principle
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{Exercise 2), there is a least positive integer in J, say m,
Then prove that f = #,,.1]

6. Prove that if ¢ and & are odd integers, then af — b2 s
divisible by 8.

7. Prove that if a is an odd integer, then {a*+ (a+ 2)2 +
{a+ 4)* 4+ 1} is divisible by 12

2-2 DIVISIBILITY

If aand b (b # 0} are integers, we say b divides ¢, or b isa &.:M_:_S
of a, if alh is an integer, We shall write b : ¢ to indicate that b divides
n.m and, bTa, to indicate that & does not divide a.

Example 2-1: 2|4, but 374,

Example 2-2: 1f a is an integer, then 1| a and —1| a; further-
more, it @ # O, then ¢ | ¢ and —a | a.

Example 2-3: For cach nonzero integer ¢, « | (.

Example 2-4: Let a. b, ¢, and d be integers, Suppose that an
integer ¢ divides both ¢ and ¢. Then there exist integers x and y such
that @ = ex and ¢ = ¢y. Therefore,

ab + cd = exb + eyd
= e¢(xh + yd),

which implies that e | (ab + cvd). Consequently, ife| ¢ and e | ¢, then

e| (ab + cd) also. o
If @ and b are integers, then any integer that divides both @ and b

is called a common divisor of @ and b.

DEFINITION 2-1:  If g and b are integers, not both zero. then an
integer d is called the greatest common divisor of ¢ end b if
(i} d =0,
(ii} d is a common divisor of ¢ and b, and , _
(iii) each integer f that is a common divisor of both a and b is
also a divisor of d.

We shall prove shortly that each pair of integers @ and v, not both
zero, has a unique greatest common divisor; this integer is denoted
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by ged.(ab). Many authors write (a.h) for g.c.d.(a.b). We do not,
becuuse we shall ofton use (g,b) to represent a point in the Enclidean
plane.

Example 2-5: The positive divisors of 12 are 1,2,3,4,6, and 12,
The positive divisors of —8 are 1. 2, 4, and 8. Thus the positive com-
mon divisors of 12 and —8 are 1, 2, and 4, hence, g.c.d.(12,—8) = 4.

Example 2-6: 1f ¢« # 0 and « | . then ged (a.b) = | a|.

Our proof of the existence and uniqueness of the greatest common
divisor depends completely on the Euclidean algorithm, a device
involving nothing more than repeated application of the division
lemma. Before proceeding with the proof, we illustrate the Euclidean
algorithm with the following example.

Example 2-7; What is g.c.d.(341,527)? Dividing 341 into 527,
we find that the ¢ and r, as in Theorem 2-1, are 1 and 186, respec-
tively, because

527=2341 -1+ 186 (2-2-2)

Clearly, any number that divides both 527 and 341 also divides 186;
for, if do=527 and de = 341, then d{c—¢) = 186.
. Twﬁrm same manner,

F

. 341 =186 - 1 + 135, {2-2-3)
) : 186 =155 -1+ 31, and (2-2-4}
155=131 " 5. (2-2-5)

By equation {2-2-5), 31 divides 153. Therefore 31 divides 186, by
{2-2-4); 31341, by (2-2-3); and 31527, by (2-2-2). Thus 31
satisfies (i) and (ii} in Definition 2-1. Finally, if f | 341 and f | 527,
then f] 186, by (2-2-2); f| 155, by {2-2~3}% and |31, by (2-2-4).
Since all three conditions in Definition 2-1 are satisfied, we see that
31 = p.c.d.(341,527).

The proof of Theorem 2 involves nothing more than the proce-
dure of Example 2-7 in a general setting,

THEOREM 2-2: If a and b are integers, not both zero, then
g.c.d.(g.b) exists and is unigue.

2-2 DIVISIBILITY 17

Proor: Clearly g.e.d.(a.b) is not affected by the signs of ¢ and
b. We have asserted that not both @ and b are zero; however, if either
is zero, say b =0, then ge.d.(4,0) is clearly equal to |a]|. In the
following proof, we mayv therefore assume that e = b = 0.

By Theorem 2-1, there exist g, and r, (0 = ¢, < b) such that
a=bg,+r,.
If r, = 0, there exist g, and r; such that
b=rg,+r,.
where @ = 5, < r,. If r, = 0, there exist g, and r, such that
L= Faly T or.

where 0 = r, < r,. This process may be continued as long as the
newly arising r; does not equal zero.
Since

b>=rm>r>rn>,.,>0

we see, by mathematical induction, that & = r; = b — i. Therefore, in
at most b steps, we shall olstain an r, that is zero.

Thus the last application of Theorem 2-1 in our procedure leads
to the result

Fu_2 = T¥y_1f, LTC«

that is, r, =0. The computation of g.¢.d.(341,527) in Example 2-T
suggests that r, ; is equal to g.e.d. (¢.b).

We have constructed the r, sothatr, , = 0. By working backward
from the final equation, we may establish successively that r,_,
divides r,. 5, v, 4. . . .. 12, 7, b, and @ Finally, if f divides both a
and h, we may proceed successively from the initial equation to deduce
that f divides r,, rp,.... r,_s, and r,_,. (Mathematical induction is
tacitly used in both of these procedures.) Thus r,_, satisfies the re-
Quirements of Definition 2-1; therefore, r,_, = g.e.d.(a.b).

Each pair of integers has only one greatest common divisor; for,
if both d, and d, are greatest common divisors of some pair ¢ and b,
it follows from (iii) of Definition 2-1 that gd, =d, and hd, = d,.
where h and g are positive integers; hence, d, = ghd,; thus 1 = gh,
and so g = h = 1. We conclude that d, = d.. B
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An integral linear combination of the integers @ and b is ap ey,
pression of the form ax + by, where x and y are integers. We sThal]
prove two corollaries of Theorem 2-2 that characterize those integers
expressible as integral linear combinations of a particular pair of
integers. First we consider an example.

Example 2-8: Using the results in Example 2-7, we yhall
express 3| = g.¢.d.(341,527) as an integral linear combination of 341
and 527. We start with the next-to-the-last equation and successively
substitute the other equations into it until we reach the initial equa-
tion. Equation (2-2-3} may be rewritten as

31 =186 —155 - 1.
Using equation (2-2-3) te express 155, we find that

31 = 186 — (341 — 186 - 1},
that is,

31=2- 1486 — 34].

Using equation (2-2~2} to express 186, we see that

31=2- (327 —341 - 1) — 341,
PO

that i,
’ 31=2-527~3-341.

Thus we have expressed 31 as a linear combination of 341 and 527.
Note that, in addition,

31=14-341 -9 - 527,
and

31=-20-341+13 - 527.
In general, there may be many pairs x and y such that
ged.(a.b) = ax + by,

CoROLLARY 2-1: If d=gcd.(a.b). then there exist integers
x and y such that

ax + by = d. {2-2 -6}
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i ions nsed in the proof of Theorem
. By tuking the n equations nsedint I e
. Mﬂ%ﬂmmbm nﬂm principle of mathematical induction, we shall hrst
8- o that there exist integers x; and y; such that
QmB—u__m_._ al
ax;+ by, =1 {(2-2-7
a—-mnll.u”_y.wv. - .a.wutlk‘
When i= 1, let x, = 1. and y, = —¢,. Now assume that integer
Jutions of (2-2-7) have been found for all i less than or equal to
Mo; < n—1). We know that
Poo1 = felfe 1 T Ters (2-2-8)
thus, by the induction hypothesis,
(GXg—1+ byp—1) — {@x, + by ) gic. = Ther. (2-2-9)
We can rewrite equation {2-2-9) in the form
(X +— %eGes)a+ (He 1 ™ Yithe-1 VB = Trsr. (2-2-10}
Hence, xi+1 = %x 1— XeGrer and Yooy = Yy — Yy ATE solutions
of equation (2-2-7) when i =k + 1. . , ~
Thus formula (2-2-7) is established for i= H L2, .. o - 1, VM
the principle of mathematical EQ:m.mo:. In particular, if i=n—
in equation (2-2-7), we get the relation

A%p 1 T OYur =Tno1 = god.(ab). [ |

COROLLARY 2-2: In order that there exist integers x and y
satisfying the equation

PA?!V W ax+ by = c. (2-2-11)
it is necessary and sufficient that d]c, where d= g.c.d.(a,b).

PrOOF: Let @ = ed, b= fd. Then, if (2-2-11) holds, we get the
relation

P@ﬂv ¢ = edx + fdy = d{ex + fy).

Thus d | ¢.

n the other hand, if djec, let kd=c. Then, by Corollary 2-1,

b &)\
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there exist x" and y' such that

ax' + by =d.
Hence
a{x’k)+ b(y'k) =dk=c.
Thus v=x'k and y = y'k provide a solution of (2-2-11). [ |

Our next theorem follows from Corollary 2-2; it will be the prin-
cipal tool we shall use in our proof of the fundamental theorem of
arithmetic. First we need some further definitions.

DEFINITION 2-2: A positive integer p other than 1 is said to be
a prime if its only positive divisors are 1 and p.

The first few primes are 2, 3, 5, 7, 11, .... {Although the 1968
World Almanac lists 1 as a prime, it is convenient not to do so in
number theory, As vou will see, the statement of the fundamental
theorem of arithmetic would be needlessly complicated if 1 were
considered prime. Perhaps this fact has been impressed on the editors
of the Almanac, for the 1969 and later editions do notlist L as a prime.}
The primes have many interesting properties, some of which we shall
explore in later sections.

N A

DEFINITRON 2-3: We say that a and b are relatively prime if

ged (e b)=1..

maaawhm 2-9: The positive divisors of 7 are 1 and 7. The positive
divisors of 27 are 1, 3, 9, and 27. Since 1 is the only positive common
divisor of 7 and 27, these two integers are relatively prime.

Example 2-10: Ifd = g.c.d.(¢.F), then a/d and bjd are relatively
prime. To show this, let x and y be integers such that ax + by = d
Then (afd)x+ (bjd)y =1, and so ge.d.(a/d,bid) = 1.

Example 2-11: If p is a prime and a is an integer such that
pTe, then p and ¢ are relatively prime. In particular, any twe dif-
ferent primes are relatively prime.

THEOREM 2-3: If @, b, and ¢ are integers, where a and ¢ are
relatively prime, and if ¢ | ab, then ¢ divides b.

Proor: Since g.c.d.(a,¢) = 1, Corollary 2-2 implies that there
exist integers x and y such that
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cx +ay=1.
Therefore,
cbx + aby=h. (2-2-12)

Since ¢ | ab, there exists a k such that ub = ke. _
Substituting ke for ab in equation (2-2-12), we find that

chx+ key=b. (2-213)
Thus

clhx + ky) = b. (2-2-14)
Hence ¢ | b. [ ]

COROLLARY 2-3: Ifa and b are integers, p is a prime, p | ab. and
pta, thenp|b.

ProoF: If pTa. then g.e.d.(a.p) = 1, because the only positive

divisors of p» are 1 and p. Hence, by Theorem 2-3 {with ¢ = p), we
see thatp | b. |

COROLLARY 2-4: If ple,¢,y...a,. then there exists some i
such that p | a;.

PROOF: We proceed by mathematical indoction. The assertion
is clear for n=1. For n =2, it is a restatement of Corollary 2-3. We
assume that the assertion is true for n less than or equal to k. Then for
n =k + 1 we consider the relation

pllaay ... ex)ag. .

By Corollary 2-3, either p | g, {sothati=k+ 1} orp | a6z .. Oy
in which case p | a; for some i(1 =i = k), by the induction hypo-
thesis. [

EXERCISES

1. Using the technique described in Example 2-7, find the
greatest common divisor of the following pairs of integers.

{a) B27, 765 (dy 108, 243
(b} 361, 1178 (e) 132, 473
(e} 12321, B658 {f) 156, 1740,
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2. Using the technigue described in Example 2-8, find the
greatest common divisor d of 299 and 481. Then find
integers x and y such that

299x + 481y = d.

3. In Exercise 2, replace 299 and 481 by 129 and 301 and
proceed as indicated.

4. The least common multiple of two positive integers a
and b (denoted by l.c.m.(a, b)) is defined to be the smallest
positive integer that is divisible by baoth g and b. Prove
that

ab
god{(a. b}’

lem.(a.b) =

3. Compute the following:
fa) l.c.m.(25,30) {d) L.c.m.(28,29)
(b) Lc.m.(42,49} fe} Lem(n,n+1)
(e} Le.m.{27,81) () Lem(2n—1.2n+ 1)
6. Prove that Le.m. (ab,ad) = a[l.cm.(b.d)].
>
7. W3<m that if D=d/g.c.d.(b,d) and B= bfg.c.d.(b,d), then

’ a,.c_ aD + ¢B
. : b d lemibd)

Discuss the relationship between this equation and the
addition of fractions by means of a “common denaominator”,

8. Prove that god.(a+ b,a—b) = ged.(a,b).
9. |Prove that, if a and & are nonzero integers, then

g.c.d.(e,b) Lem.la, b).

10. Let £, be the set of all integral multiples of the integer m.
Prove that

\MN_.: M ,VN: = Ahu\r....:.r_i.:u.

(If S and T are sets, then S N T denotes the set of elements
common to both S and T].
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11. Prove that # . 4. m.n contains all the elements of #, and
all the elements of #,. Prove that if ¢, contains all the
elements of #, and #,, then _#, contains all the elements

Om Q“x.n,a.:?i.

12. We can define a generalized Fibonacei sequence F,, 5,
F,, F,, ... by first selecting four integers g, b, ¢, and ¢,
and then letting #, =a. %, =b.and F,=c¢#,_,+eF, ,
if n > 2.

{a} Prove that, if d = g.c.d.{a,b), then d | F, forall n = L,

(b) Prove that, if f = g.c.d. (Fm, Fn-1)andg.cd. (fe)
then f1 d.

Il
=
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We have now amassed enough results to prove the fundamental
theorem of arithmetic, Before beginning this task, however, we shall
consider a result related to Corollary 2-2.

Let a, b, and ¢ be integers (g # 0 # b). The expression

ax+by=c¢ (2-3-1)

is called a linear Diophantine equation. A solution of this equation
is a pair (x,y) of integers that satisfies the equation.

From analytic geometry we know that each point in a plane can
be associated with an ordered pair of real numbers called coordinates.
A point whose coordinates are integers is called a lattice point. In
the plane, the locus of points whose coordinates x and y satisfy
equation (2-3-1) is a straight line. Thus the solutions of this linear
Diophantine equation correspond to the lattice points lying on the
straight line. Depending on the values of @, b, and ¢, there may be
none or many lattice points on the graph of ax + by = ¢.

From Corallary 2-2 we know that the linear Diophaatine equa-
tion ax+ by =c¢ has a solution if and only if d|c, where d=
g.c.d.{a,b). Suppose that d does divide ¢. Using the procedure
illustrated in Example 2-8, we can find w, and z, such that

atw, + bz, = d.
Next, we find an integer k such that ¢ = dk; and we let x, = tw,k and
yo = 2ok. Clearly, (x4,1,) is a solution of equation (2-3-1). Suppose

(x',y') is also a solution of equation (2-3-1). Then

ax' + by' = c = ax, + by,
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and so

e .. b, a b

&H +MQ fMH::T.mMQ:.
Therefore,

ﬁ '
m.? ~ %) Hm@cl y').
{(2-3-2)

By Example 2-10, gcd.(a/d,bj/d) = 1; thus, by Theorem 2-3,

AH. - Hov.

Al

Hence, there exists an integer t such that '

x'=x,+ thid. Substituting thid for »*
we find that

—xo = th/d; that is,
~ Xo In equation (2-3-2),

a. b b
dta= gl v,
and so
_— ‘” |ﬁlhl
Yo — ¥ w&¢
that is,
L n
R i ]Qc|wm.

i
We conclude that, for each solution {
there exists an integer ¢ such that

x.y') of equation {2-3-1),

’ w
x Hac+mm and

] /]
=y, —t2
Y o d

H:?bw. + I ._ . .
. Umomcmm_ thid, y, — ta/d) is a solution of equation (2-3-1) for each

b
R R T | EY TSP

We now summarize the preceding results.

THEOREM 2-4:  The linear Divphantine equation

ax + hy=rc¢

has a solution if and only if d | ¢, where d=g.c.d. {a.b). Furthermore
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if (%g-4a) 18 @ solution of this equation, then the set of solutions of
the equation consists of all integer pairs (x.y}, where

Hull.&o.T ww and Q”Q:|mm :”:._|w.|—,3._._..m.....v‘

Example 2-12: The linear Diophantine equation 15x +27y =1
has no solutions, since g.c.d.{15,27)=13 and 371 1.

Example 2-13: The linear Diophantine equation 5x +6y =1 has
a solution, since g.c.d.{5,6)= 1. By inspection, we see that {(—1,1) is
such a solution. Hence, all solutions are given by (x,y), where
x=—1+6¢y=1-5¢{t=...—-2,—-1,0,1,2,...).

EXERCISES

1. Find the general solution (if sclutions exist) of each of the
following linear Diophantine equations:

{a) 2x+ 3y =4 (d) 23x +29y = 25
(h) 17x + 19y =23 {e) 10x — By =42
(e} 15x + 31y =41 (f) 121x — 88y =572.
2. A man pays $1.43 for some apples and pears. If pears cost

17¢ each, and apples, 15¢ each, how many of each did he
buy?

3. Draw the graphs of the straight lines defined by the equa-
tions in parts (a), (b}, and {¢} of Exercise 1.

4. Prove that the area of the triangle whose vertices are
(0,0}, {(b,a), and (x.y) is | by — ax | 2.

5. Prove that if (x,,4,) is a solution of the linear Diophantine
equation ax — by = 1, then the area of the triangle whose
vertices are (0,0), (b,a), and (x,.y,} is 1/2.

6. Ig there a nondegenerate triangle with area smaller than
1/2 and with vertices (p,,q,), {Ps.4s). and {p;,q4), where
the p; and g¢; are integers? Prove vour answer.

7. What is the perpendicular distance to the origin (0,0} from
the line defined by the equation

ax - hy =17
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8. What is the shortest possibie distance hetween two lattice

points on the line defined by the linear Diophantine
equation

ax— by =c¢?

{Recull that, by the definition of a linear Diophantine equa-
tion, the constants a, &, and ¢ must be integers.)

2-4 THE FUNDAMENTAL THEOREM
OF ARITHMETIC

Table 2-1 exhibits the ways the first tw
be factored into primes.

The evidence of Table 2-1 suggests that there is exactly one
prime factorization of each integer greater than 1, it the order of the
prime factors is disregarded.

While not as intuitively apparent as the basis representation
theorem (Theorem 1-3), the foregoing conjecture not only i
is so important to the study of integers that it is called
mental theorem of arithmetic.

elve positive integers may

s true, but
the funda-

THEOREM 2-5 (Fundamental Theorem of Arithmetic): For each

integer n v”_._, there exist primes p, = Ps =Py =. .. =p, such that

b R=EMPe . .. Py

4

this factorization is unigue.

Proor: Our first goal is to prove that each integer has at least
one prime factorization. Note that (see Table 2-1) such a factorization

TABRLE 2-1: FACTORIZATION OF INTEGERS INTO PRIMES.

n factarizations
1 -

2 2

3 3

4 2.8

5 5

3] 2:.3=3-2

7 7

5 2-2.2

9 33

10 2:58=5-2

11 11

12 2:2-3=2-3-2=3.2-2
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exists for all n(2 =n = 12). Let us now assume that each integer
m(l < m = k) can be factored into primes.

Now, either k + 1 is prime or it is not. If it is prime, :ﬁ:.:m U_.”:m
factorization consists just of the prime itself. If k+ 1 is not prime, then

k+1=ab,

where l<a<k+1andl<bh<k+1} Sincel<a=kandl<b=k,
both ¢ and b have prime factorizations, say

a=pp,...ps and b=p'ps...p..

Therefore,

k+l=ppe... P00 - - P

Hence k + 1 has a prime factorization. Thus we have mmrﬂu_,_,urmﬂ by
mathematical induction that every integer greater than 1 has a prime

actorization. . . , ]
: To complete the theorem, we must establish uniqueness of fac

torization. Again we proceed by mathematical mn..w.:ocn.,:‘ Oﬂn,%mﬂm
also tells us that the factorization of eachn T_. = 12) is unigue. .5“0:
that each integer m(l < m = k) has a unique prime factoriza .
Suppose that k + 1 has the two prime factorizations

k+1=pps...pu=pIPd .. Pos

where p,=p,=...=p, and p,/ Sp,; =...= Q_H.‘ m?om ﬁm_, m,_miﬂwﬂm
k+ 1, we see that p,’ divides pips . . . pu; thus P divides p; J_. Mcnwwm.n
by Corollary 2-4. Since both p, and p; are primes, we conclude

& Lﬁﬂm.wlw we may reverse the preceding argument to show that

p, = p, for some j. Hence

pi=pi = Pis
and

P =pi P
Therefore, p, = pr’ = py; and so py=p/. Thus (k+ 1)/p, is an integer

not exceeding k, and

k41
Pz .- Pu P

f

=py... P

Hence, by the induction hypothesis, u = v, wwm =Pz, - ._” .rmz% P = ﬁ“
Thus the fundamental theorem of arithmetic is established.
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EXERCISES

1. Let E he the set of all positive even integers. Define m to
be an “even prime” if m is even but is not factorable into
two even numbers. Prove that some elements of E are

not uniquely representable as products of even primes.

2. Prove that every positive integer is uniquely represent-

able as the product of a nonnegative power of 2 (perhaps
2%} and an odd number.

3. Suppose that a = p,p, . .. p, is the unique factorization
of @ into primes (p, =p, =...=<p,). Prove that ¢ has
aunique representation

P rr &
g g ... g,

where the g; are primes, ¢, < g, < ... < ¢,, and the ¢,
are positive integers.

4. Prove that, if a = g¢,"'q,"*. . . g7 and b = 5,19, . . . 5,0u

are the factorizations of a and b into primes (see Exercise
3}, then there exist primes ¢, < ¢, < ... < ¢, and non-
negative integers g, and h; such that

» A
a=tf'8" .t and b=t LR,
i,

5. Using the notation of Exercise 4, prove that

ged(a,b) =0t . 40,

where each ¢; is the smaller of the corresponding g; and
rm-
6. Use Exercise 5 to find
{a} g.c.d.(12]1,66) {d) g.c.d.(2187,899)
(b} g.¢.d.{169,273) {e) g.c.d.(64,81)

{c) g.c.d.(51,187) (fy gedip?q.pgr), where

p. ¢, and r are primes.

7. Using the notation of Exercise 4, prove that

Lem.ia,by =t 1, . tir

LA

where each j, is the largest of the corresponding g; and h,.
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8 Do Exercise 4 of Section 2-2, using Exercises 5 and 7 of
this section.

9. Use Exercise 7 to find
{a) Lem,(125,150) {d) l.c.m.(253,506)
{b) L.e.m.{132,154) {e) lL.em.(111,1221)

(e} Le.m.(39,143) {B) Lem.(p2q.pqgr), c.crmam
p. g, and r are primes,

10. For each finite set of integers {a,b.c.....r}, we can
define

ged.(ab.c.....1)

to be the largest integer that divides eachofa,b,c, ...,
and r. We can alsc define

Lem.(a,b.c, .. -.1)

as the smallest integer that is divisible by each ofa, b, nnw
. and r. Find formulae for g.e.d.(a,b,c, ..Q an
l.c 3..?“ b.c.....r) by generalizing the assertions in Ex-

ercises 4, 3, and 7.
11. Find g.¢.d.(39,102,73) and l.e.m.{39,102,75).

i =gc =g.cdib,g), da=
. Prove that, if d, = ged(a,b), d;=gc
. n“_uu.”ﬁc.nf D=gcd{ag,b,ec), and L= lLem.(a.b,c),
then
abeD
L=94d,




CHAPTER 3

—
COMBINATORIAL AND -
COMPUTATIONAL NUMBER THEORY
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mum:n_m.m. .—: HL_wm.UH@W M_ WE saw z—m.ﬁ —..rm 5 :_.MH:TMJM are ﬂ.r@ H::—H—UTOZF

rimes. ; el
Wm zmmmu_wwmﬁwmmw_:ﬁo:m_ ideas underlying this approach will also
fourth section, we mmr :w_mdw of the theorems in later chapters. In the
tools, the MmsmS:: mm Ew.nomcem one of number theory’s most usefyl
cuss the role of oousm ::oﬁz.u:. To conclude the chapter, we shall dis-
puters in number theory. s

3-1 | PERMUTATIONS AND COMBINATIONS

4
Although i
with v«ormmﬁﬂvmpﬂcﬁmcczm and combinations are usually associated
) y theory, they are also relevant to number theory. F
. For

instance, let us’consid
, » let us stcer a problem that fa i
time he visits a'Chinese restaurant. oot @ number theorist ach

Example 3-1: Th ;
: e Dinners f . .
menu are presented as follows: or Two on a particular Chinese

DINNERS FOR Two fﬁ
You may select one dish from each category

Category A
Fung Wong Guy

Wor Hip Har
Moo Goo Guy Pen

Omammcﬂw B
Chicken Chow Mein

Ho Yu Gai Pao

30
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How many different Dinners for Two are available? Without any
Jifficulty, we can list all the available dinners:

Fung Wong Guy and Chicken Chow Mein,

Fung Wong Guy and Ho Yu Gai Poo,

Wor Hip Har and Chicken Chow Mein,

Wor Hip Har and Ho Yu Gai Poo,

Moo Goo Guy Pen and Chicken Chow Mein, and

Moo Goo Guy Pen and Ho Yu Gai Poo.

Of course, we may easily count the dinners without listing them. We
have 3 choices in Category A, and, after we make a decision there,
we have 2 choices in Category B. Thus, without looking at the list,

we note that there are
24+2+2=3-2=86

different dinners.
The simple counting procedure employed in Example 3-1 is a

particular instance of the following fundamental rule.

GENERAL COMBINATORIAL PRINCIPLE: If an element o can
be chosen from a prescribed set S in m different ways, and if there-
after, a second element 3 can be chosen from u prescribed set T inn
different ways, then the ordered pair (.8} can be chosen in mn dif-

ferent ways.®

You may be wondering what all this can really have to do with
number theory. The following examples lead us to expect that the
product of any n consecutive positive integers is divisible by the
product of the fitst n positive integers; though this assertion appears
to have no direct relationship to combinatorial ideas, we shall see
that the proof of it involves all the combinatorial concepts to be in-

troduced in this section.

Example 3-2: For n =4, the product of the first four integers is
1-2-3-4=24, and we observe that 5-6-7 - 8=1680="70 - 24;
also 10 - 11 - 12 - 13=17160 =715 - 24.

Example 3-3: For n=>35, the product of the first 5 integers is
1-2:3-4-5=120, and we observe that 4:5-6-7-8=6720=
56 - 120; also 11 - 12 - 13 - 14 - 15 = 360360 = 3003 - 120,

*This principle is actually a theorem in the foundations of mathematics, See
Theorem 10.4.12 in The Anatomy of Mathematics by Kershner and Wileos,



