Introduction to Elliptic Curves

What is an Elliptic Curve?

- An Elliptic Curve is a curve given by an equation
$E: y^{2}=f(x)$
Where $f(x)$ is a square-free (no double roots) cubic or a quartic polynomial

After a change of variables it takes a simpler form:

$$
E: y^{2}=x^{3}+A x+B \quad 4 A^{3}+27 B^{2} \neq 0
$$

So $y^{2}=x^{3}$ is not an elliptic curve but $y^{2}=x^{3}-1$ is

Why is it called Elliptic?

Arc Length of an ellipse =

$$
\int_{-a}^{a} \sqrt{\frac{a^{2}-\left(1-b^{2} / a^{2}\right) x^{2}}{a^{2}-x^{2}}} d x
$$

Let $k^{2}=1-b^{2} / a^{2}$ and change variables $x \rightarrow a x$.
Then the arc length of an ellipse is

$$
a \int_{-1}^{1} \frac{1-k^{2} x^{2}}{\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}} d x
$$

$$
\text { Arc Length }=a \int_{-1}^{1} \frac{1-k^{2} x^{2}}{y} d x
$$

$$
\text { with } y^{2}=\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)=\text { quartic in } x
$$

Graph of $y^{2}=x^{3}-5 x+8$

Elliptic curves can have separate

 components$E: Y^{2}=X^{3}-9 X$

Addition of two Points

P+Q

Doubling of Point P

Tangent Line to Eat P

Point at Infinity

Addition of Points on E

1. Commutativity. $\mathrm{P}_{1}+\mathrm{P}_{2}=\mathrm{P}_{2}+\mathrm{P}_{1}$
2. Existence of identity. $\mathrm{P}+\mathrm{O}=\mathrm{P}$
3. Existence of inverses. $\mathrm{P}+(-\mathrm{P})=\mathrm{O}$
4. Associativity. $\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right)+\mathrm{P}_{3}=\mathrm{P}_{1}+\left(\mathrm{P}_{2}+\mathrm{P}_{3}\right)$

Addition Formula

Suppose that we want to add the points

$$
P_{1}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \quad \text { and } \quad P_{2}=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)
$$

on the elliptic curve

$$
E: y^{2}=x^{3}+A x+B
$$

If $x_{1} \neq x_{2}$

$$
\text { If } x_{1}=x_{2}
$$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
m=\frac{3 x_{1}^{2}+A}{2 y_{1}}
$$

$$
x_{3}=m^{2}-x_{1}-x_{2}
$$

Note that when P1, P2 have rational coordinates and A and B are rational, then $\mathrm{P}_{1}+\mathrm{P}_{2}$ and 2 P also have rational coordinates

$$
y_{3}=m\left(x_{1}-x_{3}\right)-y_{1}
$$

Important Result

Theorem (Poincaré, ≈ 1900): Suppose that an elliptic curve E is given by an equation of the form

$$
y^{2}=x^{3}+A x+B \quad \text { with } \quad A, B \text { rational numbers } .
$$

Let $\mathrm{E}(\mathrm{Q})$ be the set of points of E with rational coordinates,

$$
E(Q)=\{(x, y) \in E: x, y \text { are rational numbers }\} \cup\{O\} .
$$

Then sums of points in $\mathrm{E}(\mathrm{Q})$ remain in $\mathrm{E}(\mathrm{Q})$.

The many uses of elliptic curves.

Really Complicated first. . .

Elliptic curves were used to prove
Fermat's Last Theorem

$$
E_{a, b, c}: y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

Suppose that $a^{p}+b^{p}=c^{p}$ with $a b c \neq 0$.
Ribet proved that $E_{a, b, c}$ is $\underline{\text { not modular }}$
Wiles proved that $E_{a, b, c, c}$ is modular.
Conclusion: The equation $a^{p}+b^{p}=c^{p}$ has no solutions.

Elliptic Curves and String Theory

In string theory, the notion of a point-like particle is replaced by a curve-like string.

As a string moves through space-time, it traces out a surface.

For example, a single string that moves around and returns to its starting position will trace a torus.

So the path traced by a string looks like an elliptic curve!
Points of E with coordinates in the complex numbers \mathbf{C} form a torus, that is, the surface of a donut.

Congruent Number Problem

- Which positive rational n can occur as areas of right triangles with rational sides?

This question appears in 900A.D. in Arab manuscripts

A theorem exists to test the numbers but it relies on an unproven conjecture.

- Ex: 5 is a congruent number because it is the area of 20/3, 3/2, 41/6 triangle

Congruent Number Problem cont. ...

Suppose a, b and c satisfy $a^{2}+b^{2}=c^{2} \quad \frac{a b}{2}=n$
Then set $x=\frac{n(a+c)}{b} \quad y=\frac{2 n^{2}(a+c)}{b^{2}}$
A Calculation shows that $y^{2}=x^{3}-n^{2} x$
Conversely: $a=\left(x^{2}-n^{2}\right) / y \quad c=\frac{x^{2}+n^{2}}{y} \quad b=\frac{2 n x}{y}$
A positive rational number n is congruent if and only if the elliptic curve has a rational point with y not equal to 0

Congruent Number Problem cont. . .

Continuing with $\mathrm{n}=5$

$$
y^{2}=x^{3}-25 x
$$

We have Point $(-4,6)$ on the curve
We find $-2 P$ is $x=\frac{1681}{144} \quad y=\frac{62279}{1728}$
We can now find a, b and c

Factoning Using Elliptic Curves

Ex: We want to factor 4453
Step 1. Generate an elliptic curve with point P mod n
$y^{2}=x^{3}+10 x-2(\bmod 4453)$ let $P=(1,3)$
Step 2. Compute BP for some integer B.
Lets compute $2 P$ first $\frac{3 x^{2}+10}{2 y}=\frac{13}{6} \equiv 3713(\bmod 4453)$
We used the fact that $\operatorname{gcd}(6,4453)=1$ to find $6^{-1} \equiv 3711(\bmod 4453)$
we find that $2 P=(x, y)$ with $x \equiv 3713^{2}-2 \quad y \equiv-3713(x-1)-3 \equiv 3230$
$2 P$ is $(4332,3230)$

Factoning Continued.

Step 3. If step 2 fails because some slope does not exist $\bmod n$, the we have found a factor of n.

To compute $3 P$ we add P and $2 P$
The slope is $\frac{3230-3}{4332-1}=\frac{3227}{4331}$

But $\operatorname{gcd}(4331,4453)=61 \neq 1$ we can not find $4331^{-1}(\bmod 4453)$

However, we have found the factor 61 of 4453

Cryptography

Suppose that you are given two points P and Q in $E\left(F_{p}\right)$.
The Elliptic Curve Discrete Logarithm Problem (ECDLP) is to find an integer m satisfying

$$
Q=\overbrace{P+P+\cdots+P=m P .}^{m \text { summands }}
$$

- If the prime p is large, it is very very difficult to find m.
- The extreme difficulty of the ECDLP yields highly efficient cryptosystems that are in widespread use protecting everything from your bank account to your government's secrets.

Elliptic Curve Diffie-Hellman Key Exchange

Public Knowledge: A group $E\left(F_{p}\right)$ and a point P of order n.

BOB
Choose secret $0<b<n$
Compute $\mathrm{Q}_{\text {Bob }}=\mathrm{bP}$
Send $\mathrm{Q}_{\text {Bob }}$
to Bob
Compute bQ $_{\text {Alice }}$
Bob and Alice have the shared value $b Q_{\text {Alice }}=a b P=a Q_{\text {Bob }}$

Can you solve this?

Suppose a collection of cannonballs is piled in a square pyramid with one ball on the top layer, four on the second layer, nine on the third layer, etc.. If the pile collapses, is it possible to rearrange the balls into a square array (how many layers)?

Hint: $\quad P_{1}$ and P_{2} are trivial solutions

Find $P_{2}+P_{3}$

$$
(x-a)(x-b)(x-c)=x^{3}-(a+b+c) x^{2}+\ldots
$$

Solution

$1^{2}+2^{2}+3^{3}+\ldots+x^{2}=\frac{x(x+1)(2 x+1)}{6}$
$y^{2}=\frac{x(x+1)(2 x+1)}{6} \quad$ This is an elliptic curve

We know two points $\quad P_{1}(0,0) \quad P_{2}(1,1)$

The line through these points is $y=x$

$$
\begin{aligned}
& x^{2}=\frac{x(x+1)(2 x+1)}{6}=\frac{x^{3}}{3}+\frac{x^{2}}{2}+\frac{x}{6} \\
& x^{3}-\frac{3}{2} x^{2}+\frac{1}{2} x=0
\end{aligned}
$$

Solution cont. . .

$0+1+x=\frac{3}{2}$ therefore P_{3} is $\left(\frac{1}{2},-\frac{1}{2}\right)$
The line through P_{2} and P_{3} is $y=3 x-2$

$$
(3 x-2)^{2}=\frac{x(x+1)(2 x+1)}{6}
$$

$$
x^{3}-\frac{51}{2} x^{2}+\ldots=0
$$

$$
\frac{1}{2}+1+x=\frac{51}{2} \quad x=24 \quad y=70
$$

$$
1^{2}+2^{2}+3^{2}+\ldots+24^{2}=70^{2}
$$

Referenoes

- Elliptic Curves Number Theory and Cryptography

Lawrence C. Washington

- http://www.math.vt.edu/people/brown/doc.html
- http://www.math.brown.edu/~jhs/

