SEQUENCES AND SETS OF OBJECTS AND THE OLEIS

JANUARY 3, 2008

Write the first $6-8$ terms of the following sequences. Assume that the sequences start at $n=0$, write a formula for a_{n} if possible (HINT: the empty word is a word of length 0). The OLEIS sequence number can be found by going to the web site 'The On-Line Encyclopedia of Integer Sequences' and entering the first terms which you calculated.
http://www.research.att.com/~njas/sequences/index.html
It may well be that the sequence that you enter is not in the database. Your next step if you find no information in the database will be to calculate more terms (try to get as high as 20) and try to arrive at a formula for a_{n}. Again, this might not be possible. Speak to me because we might be able to solve this problem together. :
(1) The number of solutions to $x_{1}+x_{2}+x_{3}+x_{4}=n$ with $x_{i} \geq 0$ with x_{4} odd and x_{3} even.
Formula? $a_{n}=\quad$ OLEIS sequence number \qquad
(2) The number of solutions to $x_{1}+x_{2}+x_{3}+x_{4}=n$ with $i \geq x_{i} \geq 0$ with x_{4} even and x_{3} even.
Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(3) The number of words of length n created with the letters a and b such that no a is adjacent to a b. Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(4) The number of words of length n created with the letters a and b such that every a is separated by at least two b 's.
Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(5) The number of words of length n created with the letters a and b such that every a is separated by at least three b 's.
Formula? $a_{n}=$
OLEIS sequence number \qquad
(6) The number of words of length n created with the letters a, b, c with at least half of the letters are a 's.
Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(7) The number of words of length n created with the letters a, b, c with no consecutive letters being equal.
Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(8) The number of words of length n created with the letters a, b, c with all c 's appearing after all of the b 's.
Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(9) The number of words of length n created with the letters a, b, c with at least as many a 's as b 's and at least as many b 's as c 's.
Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(10) The number of words of length n created with the letters a, b, c with every b adjacent to at least one c.
Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(11) The number of words of length n created with the letters a, b, c with every b adjacent to at least one c and one a. Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(12) The number of words of length n created with the letters a, b, c with every c not adjacent to any as.
Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(13) The number of words of length n created with the letters $\overline{a, b, c \text { with every } b \text { occurring in }}$ groups of two or more.
Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(14) The number of words of length n created with the letters a, b, c with no b s that are adjacent.
Formula? $\overline{a_{n}=} \quad$ OLEIS sequence number \qquad
(15) The number of words of length n created with the letters a, b, c with every a and every b adjacent to at least one c.
Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(16) The number of words of length n created with the letters a, b, c with every b separated from every c by at least one a.
Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(17) The number of words of length n created with the letters a, b, c with every b separated from every c by at least two a.
Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(18) The number of words of length n created with the letters $\overline{a, b, c \text { with more } c s \text { than either }}$ as or $b \mathrm{~s}$.
Formula? $a_{n}=$
OLEIS sequence number \qquad
(19) The number of words of length n created with the letters a, b, c with more $c s$ than the number of a s and $b \mathrm{~s}$ put together.
Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(20) The number of words of length n created with the letters a, b, c with more $c s$ than b s and more $b s$ than as.
Formula? $a_{n}=\ldots$ OLEIS sequence number \qquad
(21) The number of words of length $n(n \geq 1)$ in 3 letters $\{a, b, \overline{c\}}$ with an even number of a 's such that if $w=u v$ where u and v are non-empty then w is strictly smaller than v in dictionary order. Example 1: We have that $a a b$ is strictly smaller than the both $a b$ and b. Example 2: aabaabccaca is not the lexicographically smallest of all of its tails because a is smaller in dictionary order. Example 3: aabaab is not strictly smaller than $a a b$ so it does not count.
Formula? $a_{n}=$
OLEIS sequence number \qquad
(22) The number of words of length n in two letters $\{0,1\}$ such that every head (every subword starting at the beginning of the word) has at least as many 0 s as 1 s and there are an even number of 0 s .
Formula? $a_{n}=\quad$ OLEIS sequence number
(23) The number of words of length $2 n$ in two letters $\{0,1\}$ such that every head (every subword starting at the beginning of the word) has at least as many 0 s as 1 s and there are an even number of 0 s and an even number of 1 s .
Formula? $a_{n}=$ \qquad OLEIS sequence number \qquad
(24) The number of words of length $4 n$ in two letters $\{0,1\}$ such that every head (every subword starting at the beginning of the word) has at least as many 0 s as 1 s and there are an even number of 0 s and the same number of 1 s as 0 s .
Formula? $a_{n}=$ \qquad OLEIS sequence number
(25) The number of words of length n in the alphabet $\{1,2, \ldots, \overline{n\}}$ such that the letter i only occurs in positions 1 through i and the sum of the letters of the word is equal to 0 mod 3.

Formula? $a_{n}=\ldots$ OLEIS sequence number \qquad

