Solving Systems of Linear Congruences Using the Chinese Remainder Theorem

example 1: $x \equiv 2 \pmod{3}$ $x \equiv 3 \pmod{5}$ $x \equiv 2 \pmod{7}$

The solution can be found using the following equation:

<u>Step 1</u>: Start with the equations you want to solve. In order for the CRT to apply, the mods must be relatively prime, so check this. Then, calculate M (the mod for your answer) by multiplying the mods from the congruences.

In this example, the answer will be mod $(3 \times 5 \times 7) = \text{mod } 105$

<u>Step 2</u>: For each equation, $x \equiv b_k \pmod{m_k}$, calculate M_k by finding the product of the mods from the OTHER congruences, ie. $M_k = M/m_k$. Set up the congruences to find the inverses of the M_k 's (mod m_k).

$$35y_1 \equiv 1 \pmod{3}$$
 $21y_2 \equiv 1 \pmod{5}$ $15y_3 \equiv 1 \pmod{7}$

Step 3: Solve each of these for yk.

$$35y_1 \equiv 1 \pmod{3}$$
 $21y_2 \equiv 1 \pmod{5}$ $15y_3 \equiv 1 \pmod{7}$ $y_1 \equiv 2 \pmod{3}$ $y_2 \equiv 1 \pmod{5}$ $y_3 \equiv 1 \pmod{7}$

<u>Step 4</u>: For each equation multiply together the numbers b_k (occurring in the original equation), the M_k (the product of all the other mods) and the y_k found in step 3. Then add them all up.

$$x \equiv 2(35)(2) + 3(21)(1) + 2(15)(1) \pmod{105}$$

 $\equiv 233 \equiv 23 \pmod{105}$

In the general case, we are solving congruences of the form:

$$a_k x = b_k \pmod{m_k}$$

Now it is important to check that $gcd(a_k,m_k)$ divides b_k . If it does, we have one or more solutions, c_1 , c_2 , ..., c_d where $d = gcd(a_k,m_k)$. If it doesn't, we have no solutions.

A solution to a system of these congruences (if a solution exists) can be found using:

$$x = c_1 M_1 y_1 + c_2 M_2 y_2 + c_r M_r y_r \pmod{M}$$

(The M, M_k 's and y_k 's are as before. The c_k 's are solutions to the individual congruences.)

13 39