A PROOF?

MIKE ZABROCKI

Abstract. This proof is false, but where is the error?

Question: How many non-negative integer solutions are there to the equation

$$
x_{1}+x_{2}+\cdots+x_{k}=n ?
$$

Solution: Note that every solution to this equation can be represented by a word with x_{1} ones, x_{2} twos, and x_{3} threes, etc.

For example: $3+1+2=6$ can be represented by the word 111233 .
Morover every word in the letters $1,2,3, \ldots k$ of length n represents a solution to the equation $x_{1}+x_{2}+\cdots+x_{k}=n$ by setting x_{1} equal to the number of ones, x_{2} equal to the number of $2 s$, etc. and x_{k} equal to the number of $k \mathrm{~s}$.

Therefore we have established that there is a $1-1$ correspondence between the set of solutions to the equation $x_{1}+x_{2}+\cdots+x_{k}=n$ and the words of length n in the letters $1,2, \ldots, k$.

For each letter in a word with the letters $1,2, \ldots, k$ of length n is formed by picking one of k letters for each blank. Therefore, by the multiplication principle the number of words of length n is k^{n}. Since we have established that there is a $1-1$ correspondence between these words and the solutions, the number of solutions is also k^{n}.

Answer: k^{n}

