SOME FIBBONACCI GENERATING FUNCTIONS

FEBRUARY 28, 2008

Recall $F(q)=\sum_{n \geq 0} F_{n+1} q^{n}=\frac{1}{1-q-q^{2}}$ and $L(q)=\sum_{n \geq 0} L_{n+1} q^{n}=\frac{1+2 q}{1-q-q^{2}}$
(1) Use the fact that $(A(q)+A(-q)) / 2=\sum_{n \geq 0} a_{2 n} q^{2 n}$ to give a generating function for the odd Fibbonacci numbers $F_{\text {odd }}(q)=\sum_{n \geq 0} F_{2 n+1} q^{n}$.
(2) Use the fact that $(A(q)-A(-q)) / 2=\sum_{n>0} a_{2 n+1} q^{2 n+1}$ to give a generating function for the even Fibbonacci numbers $F_{\text {even }}(q)=\sum_{n \geq 0} F_{2 n+2} q^{n}$.
(3) Use the following set of three formulas:

$$
\begin{aligned}
& F_{n}^{2}=F_{n} F_{n-1}+F_{n} F_{n-2} \\
& F_{n} F_{n+1}=F_{n}^{2}+F_{n} F_{n-1} \\
& F_{n+2} F_{n}=F_{n+1} F_{n}+F_{n}^{2}
\end{aligned}
$$

to write down three equations with the generating functions $D^{(0)}(q)=\sum_{n \geq 0} F_{n+1}^{2} q^{n}$, $D^{(1)}(q)=\sum_{n \geq 0} F_{n+1} F_{n+2} q^{n}, D^{(2)}(q)=\sum_{n \geq 0} F_{n+1} F_{n+3} q^{n}$. Use those equations to solve for $D^{(0)}(q), D^{(1)}(q), D^{(2)}(q)$.
(4) Use the results of the previous problem and the fact that $L_{n}=F_{n+1}+F_{n-1}$ for $n \geq 2$ to give a formula for the generating function $M^{(0)}(q)=\sum_{n \geq 0} F_{n+1} L_{n+1} q^{n}$.
(5) Use the generating functions $D^{(0)}(q), D^{(1)}(q), D^{(2)}(q)$ to give a formula for the generating function $M^{(1)}(q)=\sum_{n \geq 0} F_{n+2} L_{n+1} q^{n}$.
(6) Use the previous two problems and the fact that $L_{n+2}=L_{n+1}+L_{n}$ to find a formula for the generating function $M^{(-1)}(q)=\sum_{n \geq 0} F_{n+1} L_{n+2} q^{n}$

Record your answers below:

$$
\begin{array}{r}
F_{\text {odd }}(q)=1+2 q+5 q^{2}+13 q^{3}+34 q^{4}+\cdots=\sum_{n \geq 0} F_{2 n+1} q^{n}= \\
F_{\text {even }}(q)=1+3 q+8 q^{2}+21 q^{3}+55 q^{4}+\cdots=\sum_{n \geq 0} F_{2 n+2} q^{n}= \\
D^{(0)}(q)=1+q+4 q^{2}+9 q^{3}+25 q^{4}+\cdots=\sum_{n \geq 0} F_{n+1}^{2} q^{n}= \\
D^{(1)}(q)=1+2 q+6 q^{2}+15 q^{3}+40 q^{4}+\cdots=\sum_{n \geq 0} F_{n+2} F_{n+1} q^{n}= \\
D^{(2)}(q)=2+3 q+10 q^{2}+24 q^{3}+65 q^{4}+\cdots=\sum_{n \geq 0} F_{n+3} F_{n+1} q^{n}= \\
M^{(0)}(q)=1+3 q+8 q^{2}+21 q^{3}+55 q^{4}+\cdots=\sum_{n \geq 0} F_{n+1} L_{n+1} q^{n}= \\
M^{(1)}(q)=1+6 q+12 q^{2}+35 q^{3}+88 q^{4}+\cdots=\sum_{n \geq 0} F_{n+2} L_{n+1} q^{n}= \\
M^{(-1)}(q)=3+4 q+14 q^{2}+33 q^{3}+90 q^{4}+\cdots=\sum_{n \geq 0} F_{n+1} L_{n+2} q^{n}=
\end{array}
$$

