Summary of Vector Spaces

March 1, 2005

Given $V n$-dimensional vector space over F with basis $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and W an m dimensional vector space with basis $\mathcal{E}=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$. If $\phi\left(v_{j}\right)=\sum_{i=1}^{n} a_{i j} w_{i}$, then $M_{\mathcal{B}}^{\mathcal{E}}: \operatorname{Hom}(V, W) \rightarrow$ $M_{m \times n}(F)$ where

$$
M_{\mathcal{B}}^{\mathcal{E}}(\phi)=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & & \vdots \\
\vdots & & \ddots & \\
a_{m 1} & \cdots & & a_{m n}
\end{array}\right]
$$

Using this map, $\operatorname{Hom}(V, W) \cong M_{m \times n}(F)$ as vector spaces over F.

Exercise 1 If $\mathcal{D}=\left\{u_{1}, u_{2}, \ldots u_{k}\right\}$ is a basis for a k dimensional space U over F and $\psi\left(u_{j}\right)=$ $\sum_{i=1}^{n} b_{i j} v_{i}$, calculate $\phi \circ \psi\left(u_{i}\right)$ and explain how this shows $M_{\mathcal{E}}^{\mathcal{D}}(\phi \circ \psi)=M_{\mathcal{B}}^{\mathcal{E}}(\phi) M_{\mathcal{D}}^{\mathcal{B}}(\psi)$.

We can conclude from this that $\operatorname{Hom}(V, V) \cong M_{n \times n}(F)$ as F-algebras (recall the product on $\operatorname{Hom}(V, V)$ is o and the product on $M_{n \times n}(F)$ is matrix multiplication) since they are isomorphic as vector spaces and now we know that $M_{\mathcal{B}}^{\mathcal{B}}$ is a homomorphism with respect to the \circ operation on $\operatorname{Hom}(V, V)$ and the matrix product on $M_{n \times n}(F)$.

Define $V^{*}=\operatorname{Hom}(V, F)$ and $\mathcal{B}^{*}=\left\{v_{1}^{*}, v_{2}^{*}, \ldots, v_{n}^{*}\right\} \subseteq \operatorname{Hom}(V, F)$ is called the dual space and dual basis of V where $v_{i}^{*}\left(v_{j}\right)=\delta_{i j}$. Elements of V^{*} are called linear functionals. $V^{* *}$ (the dual of V^{*}) is called the double dual of V.

If V is finite dimensional then the dimension of V^{*} is equal to the dimension of V and $V^{* *} \cong V$ (in a natural way).

If V is infinite dimensional then V^{*} is larger than V and $V^{* *}$ is not isomorphic to V.

Exercise 2 If V is infinite dimensional with basis \mathcal{A}, prove that $\mathcal{A}^{*}=\left\{v^{*} \mid v \in \mathcal{A}\right\}$ does not span V^{*}.

Exercise 3 Let \mathcal{A} be a basis for the infinite dimensional space V. Prove that V is isomorphic to the direct sum of copies of the field F indexed by the set \mathcal{A}. Prove that the direct product of copies of F indexed by \mathcal{A} is a vector space over F and it has strictly larger dimension than the dimension of V (see exercises in section 10.3).

Exercise 4 If V is infinite dimensional with basis \mathcal{A}, prove that V^{*} is isomorphic to the direct product of copies of F indexed by \mathcal{A}. Deduce that $\operatorname{dim} V^{*}>\operatorname{dim} V$.

With $\phi \in \operatorname{Hom}(V, W)$, define ϕ^{*} to be an element of $\operatorname{Hom}\left(W^{*}, V^{*}\right)$ given for all $f \in W^{*}, \phi^{*}(f)=$ $f \circ \phi \in V^{*}$.

Exercise 5 Compute $\phi^{*}\left(w_{i}^{*}\right)$ and use this calculation to determine $M_{\mathcal{E}^{*}}^{\mathcal{B}^{*}}\left(\phi^{*}\right)$.

