Summary of Vector Spaces

March 1, 2005

Given V n-dimensional vector space over F with basis $\mathcal{B} = \{v_1, v_2, \ldots, v_n\}$ and W an m dimensional vector space with basis $\mathcal{E} = \{w_1, w_2, \ldots, w_m\}$. If $\phi(v_j) = \sum_{i=1}^n a_{ij}w_i$, then $M_{\mathcal{B}}^{\mathcal{E}} : Hom(V, W) \to M_{m \times n}(F)$ where

$M_{\mathcal{B}}^{\mathcal{E}}(\phi) =$	$\begin{bmatrix} a_{11} \end{bmatrix}$	a_{12}	•••	a_{1n}
	a_{21}	a_{22}		:
	÷		·.	
	a_{m1}	•••		a_{mn}

Using this map, $Hom(V, W) \cong M_{m \times n}(F)$ as vector spaces over F.

Exercise 1 If $\mathcal{D} = \{u_1, u_2, \dots, u_k\}$ is a basis for a k dimensional space U over F and $\psi(u_j) = \sum_{i=1}^n b_{ij}v_i$, calculate $\phi \circ \psi(u_i)$ and explain how this shows $M_{\mathcal{E}}^{\mathcal{D}}(\phi \circ \psi) = M_{\mathcal{B}}^{\mathcal{E}}(\phi)M_{\mathcal{D}}^{\mathcal{B}}(\psi)$.

We can conclude from this that $Hom(V, V) \cong M_{n \times n}(F)$ as *F*-algebras (recall the product on Hom(V, V) is \circ and the product on $M_{n \times n}(F)$ is matrix multiplication) since they are isomorphic as vector spaces and now we know that $M_{\mathcal{B}}^{\mathcal{B}}$ is a homomorphism with respect to the \circ operation on Hom(V, V) and the matrix product on $M_{n \times n}(F)$.

Define $V^* = Hom(V, F)$ and $\mathcal{B}^* = \{v_1^*, v_2^*, \dots, v_n^*\} \subseteq Hom(V, F)$ is called the dual space and dual basis of V where $v_i^*(v_j) = \delta_{ij}$. Elements of V^* are called linear functionals. V^{**} (the dual of V^*) is called the double dual of V.

If V is finite dimensional then the dimension of V^* is equal to the dimension of V and $V^{**} \cong V$ (in a natural way).

If V is infinite dimensional then V^* is larger than V and V^{**} is not isomorphic to V.

Exercise 2 If V is infinite dimensional with basis \mathcal{A} , prove that $\mathcal{A}^* = \{v^* | v \in \mathcal{A}\}$ does not span V^* .

Exercise 3 Let \mathcal{A} be a basis for the infinite dimensional space V. Prove that V is isomorphic to the direct sum of copies of the field F indexed by the set \mathcal{A} . Prove that the direct product of copies of F indexed by \mathcal{A} is a vector space over F and it has strictly larger dimension than the dimension of V (see exercises in section 10.3).

Exercise 4 If V is infinite dimensional with basis \mathcal{A} , prove that V^* is isomorphic to the direct product of copies of F indexed by \mathcal{A} . Deduce that dim $V^* > \dim V$.

With $\phi \in Hom(V, W)$, define ϕ^* to be an element of $Hom(W^*, V^*)$ given for all $f \in W^*$, $\phi^*(f) = f \circ \phi \in V^*$.

Exercise 5 Compute $\phi^*(w_i^*)$ and use this calculation to determine $M_{\mathcal{E}^*}^{\mathcal{B}^*}(\phi^*)$.