A BIG EXAMPLE SOLUTIONS - MATH 6161

MAY 22, 2003
(1) (Sandeep) Lets denote the conjugacy class of an element $x \in G$ as x^{G}. From now on $G=D_{n}$. For n odd: Since $e \in Z\left(D_{n}\right) e^{D_{n}}=\{e\},\left\{x^{i}, x^{-i}\right\}$ for $1 \leq i \leq n-1$ and $\left\{y, x y, x^{2} y, \ldots, x^{n-1} y\right\}$ are all of the conjugacy classes. There are $1+1+(n-1) / 2=(n+3) / 2$ classes in total.
For n even $=2 m$: Again we have $\{e\}$ as well $\left\{x^{m}\right\}$ and $\left\{x^{i}, x^{-i}\right\}$ for $1 \leq i \leq m-1$, also $\left\{y, x^{2} y, \ldots, x^{n-2} y\right\},\left\{x y, x^{3} y, \ldots, x^{n-1} y\right\}$ are all of the conjugacy classes. There are $1+1+1+1+(n-2) / 2=(n+6) / 2=m+3$ classes in total.
Why: e in center, $\left(x^{j} y\right) x^{i}\left(x^{j} y\right)^{-1}=x^{-i}$ so x^{i} and x^{-i} are conjugate, $\left(x^{j} y\right) x^{i} y\left(x^{j} y\right)^{-1}=$ $x^{2 j-i}$. If n is even then $2 j-i$ will always be even if i is even and will always be odd if i is odd so there are two conjugacy classes when n is even. If n is odd then $2 j-i$ will can take on any value for i fixed.
(2) (Ziting/Weihong) We must have that $\chi(x)=a$ and $\chi(y)=b$ and it must satisfy the relations $a^{n}=1, a^{2}=1, b^{2}=1$ because $1=\chi(e)=\chi\left(x^{n}\right)=a^{n}, x$ is conjugate to x^{-1} so $a=\chi(x)=\chi\left(x^{-1}\right)=a^{-1}$, and $1=\chi(e)=\chi\left(y^{2}\right)=\chi(y)^{2}=b^{2}$. If n is even then we have that $a^{2}=1$ and $b^{2}=1$ characterizes these values and there are exactly 41 -dimensional representations of D_{n} (with $\chi(x)= \pm 1$ and $\chi(y)= \pm 1$). If n is odd then $a=1$ and $b^{2}=1$ characterizes the relations and there are exactly 2 1-dimensional representations (with $\chi(x)=1$ and $\chi(y)= \pm 1$).
(3) (Ziting) Let m_{i} be the dimensions of the irreducibles in D_{n}. We know that $\sum m_{i}^{2}=\left|D_{n}\right|=$ $2 n$.
If n is odd then there are $(n+3) / 2$ conjugacy classes and two 1 -dimensional representations so the remaining $(n-1) / 2$ representations have dimension greater $m_{i} \geq 2 . \sum m_{i}^{2}=$ $2+\sum_{\text {not 1-d reps }} m_{i}^{2}=2 n$ so we have the sum $\sum_{\text {not 1-d reps }} m_{i}^{2}=2(n-1)$ and since there are $(n+3) / 2$ irreducible representations in total and $(n+3) / 2-2=(n-1) / 2$ are not one dimensional, then

$$
\sum_{\text {not } 1-\mathrm{d} \text { reps }} m_{i}^{2} \geq 2^{2}(\# \text { of not 1-d reps })=2(n-1)
$$

with equality if and only if all of the $m_{i}=2$. Therefore all $m_{i}=2$.
A similar argument works for n even. We have $\sum m_{i}^{2}=4+\sum$ not 1-d reps $m_{i}^{2}=2 n$, so that $\sum_{\text {not }} 1$-d reps $m_{i}^{2}=2(n-2)$. We also know that there are $(n+6) / 3$ irreducible representations in total and $(n+6) / 2-4=(n-2) / 2$ which are not 1 -dimensional, then we have

$$
\sum_{\text {not } 1-\mathrm{d} \text { reps }} m_{i}^{2} \geq 2^{2}(\# \text { of not 1-d reps })=2 n-4
$$

with equality if an only if all of the $m_{i}=2$ (and we do have equality).
(4) (Weihong) For D_{4}, list the 1-dimensional representations and the last one can be obtained by orthogonality relations.

D_{4}	e	x^{2}	x, x^{3}	$y, x^{2} y$	$x y, x^{3} y$
$\chi^{(1)}$	1	1	1	1	1
$\chi^{(2)}$	1	1	1	-1	-1
$\chi^{(3)}$	1	1	-1	1	-1
$\chi^{(4)}$	1	1	-1	-1	1
$\chi^{(5)}$	2	-2	0	0	0

For D_{5} the table is 4×4 with the first two modules are 1-dimensional and the last two are two dimensional.

D_{5}	e	x, x^{4}	x^{2}, x^{3}	$y, x y x^{2} y, x^{3} y, x^{4} y$
$\chi^{(1)}$	1	1	1	1
$\chi^{(2)}$	1	1	1	-1
$\chi^{(3)}$	2	a	b	c
$\chi^{(4)}$	2	d	e	f

Use the character relations between the rows to solve for the remaining entries.

$$
2+2 a+2 b+5 c=0,2+2 a+2 b-5 c=0,2+2 d+2 e+5 f=0,2+2 d+2 e-5 f=0
$$

this implies that $c=0, f=0, a=e$ and $b=d=1-a$ In addition by the orthogonality relations, $\frac{1}{10}\left(2^{2}+2 a^{2}+2 b^{2}\right)=1$ and so $a=\frac{-1 \pm \sqrt{5}}{2}$.

D_{5}	e	x, x^{4}	x^{2}, x^{3}	$y, x y x^{2} y, x^{3} y, x^{4} y$
$\chi^{(1)}$	1	1	1	1
$\chi^{(2)}$	1	1	1	-1
$\chi^{(3)}$	2	$\frac{-1+\sqrt{5}}{2}$	$\frac{1-\sqrt{5}}{2}$	0
$\chi^{(4)}$	2	$\frac{1-\sqrt{5}}{2}$	$\frac{-1+\sqrt{5}}{2}$	0

(5) (Ziting) Notice that $a_{1-i}=a_{i+1} \bmod 2$ so we can say that $x^{j}\left(a_{i}\right)=a_{i+j} \bmod 2$. Now compute the action on a basis to show that $g(h(v))=(g h)(v)$. Remark: You might only need to show that the group relations are satisfied $x^{4}(v)=v, y^{2}(v)=v, x(y(v))=y\left(x^{-1}(v)\right)$, but you would have to justify that this is sufficient. Instead do the following 8 calculations:

$$
\begin{aligned}
& \left(x^{j} x^{k}\right)\left(a_{i}\right)=a_{i+j+k \bmod 2}=x^{j}\left(x^{k}\left(a_{i}\right)\right) \quad\left(x^{j} x^{k}\right)\left(b_{i}\right)=b_{i+j+k \bmod 2} \\
& \left(x^{j} x^{k} y\right)\left(a_{i}\right)=b_{i+j+k} \bmod 2=x^{j}\left(\left(x^{k} y\right)\left(a_{i}\right)\right) \quad\left(x^{j} x^{k} y\right)\left(b_{i}\right)=a_{i+j+k \bmod 2}=x^{j}\left(\left(x^{k} y\right)\left(b_{i}\right)\right) \\
& \left(x^{j} y x^{k}\right)\left(a_{i}\right)=b_{i+j-k}^{\bmod 2}=\left(x^{j} y\right)\left(x^{k}\left(a_{i}\right)\right) \quad\left(x^{j} y x^{k}\right)\left(b_{i}\right)=a_{i+j-k \bmod 2}=\left(x^{j} y\right)\left(x^{k}\left(b_{i}\right)\right) \\
& \left(x^{j} y x^{k} y\right)\left(a_{i}\right)=a_{i+j-k}^{\bmod 2}=\left(x^{j} y\right)\left(\left(x^{k} y\right)\left(a_{i}\right)\right) \quad\left(x^{j} y x^{k} y\right)\left(b_{i}\right)=b_{i+j-k \bmod 2}=\left(x^{j} y\right)\left(\left(x^{k} y\right)\left(b_{i}\right)\right)
\end{aligned}
$$

(6) (Huilan) $V=\mathcal{L}\left\{a_{0}, a_{1}, b_{0}, b_{1}\right\}, X: D_{4} \rightarrow G l(V)$ by

$$
\begin{aligned}
& X(e)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=X\left(x^{2}\right) \\
& X(x)=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]=X\left(x^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& X(y)=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]=X\left(x^{2} y\right) \\
& X(x y)=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]=X\left(x^{3} y\right)
\end{aligned}
$$

The character is then $\chi(e)=\chi\left(x^{2}\right)=4, \chi(a)=0$ for $a \neq e, x^{2}$.
(7) (Huilan) Computing the scalar products in the character table we find that

$$
\left\langle\chi, \chi^{(i)}\right\rangle=\frac{1}{8}(4+4+0+0+0)=1
$$

and so we conclude that $\chi=\chi^{(1)}+\chi^{(2)}+\chi^{(3)}+\chi^{(4)}$ which is the sum of all of the 1 dimensional representations.
(8) (Dan) Either guess or use orthogonality relations to determine the following subspaces.

$$
\begin{aligned}
\mathcal{L}\left\{a_{0}, a_{1}, b_{0}, b_{1}\right\}=\mathcal{L}\left\{a_{0}+a_{1}+b_{0}+b_{1}\right\} \oplus \mathcal{L}\left\{a_{0}+a_{1}-b_{0}-b_{1}\right\} \\
\oplus \mathcal{L}\left\{-a_{0}+a_{1}+b_{0}-b_{1}\right\} \oplus \mathcal{L}\left\{a_{0}-a_{1}+b_{0}-b_{1}\right\}
\end{aligned}
$$

The spaces are listed in order, such that each corresponds to $\chi^{(1)}, \chi^{(2)}, \chi^{(3)}$ and $\chi^{(4)}$ respectively. Check the action of the generators on these in order to show that they agree with the character table.

$$
\begin{gathered}
x\left(a_{0}+a_{1}+b_{0}+b_{1}\right)=a_{0}+a_{1}+b_{0}+b_{1} \\
y\left(a_{0}+a_{1}+b_{0}+b_{1}\right)=a_{0}+a_{1}+b_{0}+b_{1} \\
x\left(a_{0}+a_{1}-b_{0}-b_{1}\right)=a_{0}+a_{1}-b_{0}-b_{1} \\
y\left(a_{0}+a_{1}-b_{0}-b_{1}\right)=-\left(a_{0}+a_{1}-b_{0}-b_{1}\right) \\
x\left(-a_{0}+a_{1}+b_{0}-b_{1}\right)=-\left(-a_{0}+a_{1}+b_{0}-b_{1}\right) \\
y\left(-a_{0}+a_{1}+b_{0}-b_{1}\right)=-\left(-a_{0}+a_{1}+b_{0}-b_{1}\right) \\
x\left(a_{0}-a_{1}+b_{0}-b_{1}\right)=-\left(a_{0}-a_{1}+b_{0}-b_{1}\right) \\
y\left(a_{0}-a_{1}+b_{0}-b_{1}\right)=a_{0}-a_{1}+b_{0}-b_{1}
\end{gathered}
$$

(9) (Sandeep) There is an isomorphism between monomials of degree k and sequences of k dots and 3 bars. A $a_{0}^{r_{1}} a_{1}^{r_{2}} b_{0}^{r_{3}} b_{1}^{r_{4}}$ is associated to r_{1} dots followed by a bar, r_{2} dots followed by a bar, r_{3} dots followed by a bar and r_{4} dots. There are $\binom{k+3}{3}$ different sequences of this types and so there are the same number of monomials.
(10) (Dan) The action on the polynomials is the one induced from the action of x and y on the variables $a_{0}, a_{1}, b_{0}, b_{1}$. We define $x\left(a_{0}^{r_{1}} a_{1}^{r_{2}} b_{0}^{r_{3}} b_{1}^{r_{4}}\right)=a_{0}^{r_{2}} a_{1}^{r_{1}} b_{0}^{r_{4}} b_{1}^{r_{3}}$ and $y\left(a_{0}^{r_{1}} a_{1}^{r_{2}} b_{0}^{r_{3}} b_{1}^{r_{4}}\right)=$ $a_{0}^{r_{3}} a_{1}^{r_{4}} b_{0}^{r_{1}} b_{1}^{r_{2}}$. Notice that for $g \in D_{4}$ we have $g\left(a_{0}^{r_{1}} a_{1}^{r_{2}} b_{0}^{r_{3}} b_{1}^{r_{4}}\right)=g\left(a_{0}\right)^{r_{1}} g\left(a_{1}\right)^{r_{2}} g\left(b_{0}\right)^{r_{3}} g\left(b_{1}\right)^{r_{4}}$ and we already showed that g acting on each of the variables defines a D_{4}-homomorphism, therefore this action defines a D_{4}-homomorphism on the monomials in these variables.
(11) (Marcus) Note that by (9), P_{2} has 10 basis elements. They are $a_{0}^{2}, a_{1}^{2}, b_{0}^{2}, b_{1}^{2}, a_{0} a_{1}, a_{0} b_{0}$, $a_{0} b_{1}, a_{1} b_{0}, a_{1} b_{1}$, and $b_{0} b_{1}$. Calculating the action of a representative of each of the five equivalence classes of D_{4} on the basis elements and noting the number of the elements of the basis kept fixed, we get $\chi(e)=10, \chi\left(x^{2}\right)=10, \chi(x)=\chi\left(x^{3}\right)=2, \chi(y)=\chi\left(x^{2} y\right)=2$, and $\chi(x y)=\chi\left(x^{3} y\right)=2$.
(12) (Marcus) Calculating the inner product of χ with the irreducible characters of D_{4} [see the solution to (4)] will give us the multiplicities of each of the irreducibles of P_{2}. Calculating we get $<\chi, \chi^{(1)}>=4,<\chi, \chi^{(2)}>=2,<\chi, \chi^{(3)}>=2,<\chi, \chi^{(4)}>=2$, and $<\chi, \chi^{(5)}>=0$. As a check, note that

$$
\chi(e)=10=4 \chi^{(1)}(e)+2 \chi^{(2)}(e)+2 \chi^{(3)}(e)+2 \chi^{(4)}(e)+0 \chi^{(5)}(e) .
$$

