JUNE 12, 2003

PART I: written and computational. Instructions: Do any 4 of the following 6 problems.
(1) Find the value of $\left\langle p_{1}^{n}, h_{k} h_{n-k}\right\rangle$. Use this to compute the dimension of the irreducible character χ^{μ} for μ a two row partition.
(2) Expand $h_{(3,2,1)}$ in the
(a) p-basis
(b) e-basis
(c) s-basis
(3) Use the following identity,

$$
\Delta\left(p_{\mu}\right)=\sum_{\lambda} \frac{p_{\lambda}}{z_{\lambda}} \otimes\left(p_{\lambda}^{\perp} p_{\mu}\right)
$$

to show in general that for any dual bases $\left\{a_{\lambda}\right\}_{\lambda}$ and $\left\{b_{\lambda}\right\}_{\lambda}$, and for any $f \in \Lambda$,

$$
\Delta(f)=\sum_{\lambda} a_{\lambda} \otimes\left(b_{\lambda}^{\perp} f\right) .
$$

(4) Calculate $\left\langle h_{(3,3)}, h_{(3,2,1)}\right\rangle$, or equivalently, find the coefficient of $m_{(3,3)}$ in $h_{(3,2,1)}$.
(5) Determine the coefficient of $z^{0}, z^{1}, z^{2}, z^{3}$ and z^{4} in the expression $m_{(3,2,1)}[X+z]$.
(6) You are given below a table of coefficients of $p_{\lambda} / z_{\lambda}$ in h_{μ} (μ indexes the left side of the table and λ the row across the top). Use this to calculate the first 6 rows of the character table for S_{6}. Explain in a few words how you can easily find the last 5 rows from the first 5 .

$\left(1^{6}\right)$							$\left(2,1^{4}\right)$	$\left(2^{2}, 1^{2}\right)$	$\left(3,1^{3}\right)$	$\left(2^{3}\right)$	$(3,2,1)$
$\left(4,1^{2}\right)$	$\left(3^{2}\right)$	$(4,2)$	$(5,1)$	(6)							
(6)	1	1	1	1	1	1	1	1	1	1	1
$(5,1)$	6	4	2	3	0	1	2	0	0	1	0
$(4,2)$	15	7	3	3	3	1	1	0	1	0	0
$(4,1,1)$	30	12	2	6	0	0	2	0	0	0	0
$(3,3)$	20	8	4	2	0	2	0	2	0	0	0
$(3,2,1)$	60	16	4	3	0	1	0	0	0	0	0
$(3,1,1,1)$	120	24	0	6	0	0	0	0	0	0	0
$(2,2,2)$	90	18	6	0	6	0	0	0	0	0	0
$(2,2,1,1)$	180	24	4	0	0	0	0	0	0	0	0
$(2,1,1,1,1)$	360	24	0	0	0	0	0	0	0	0	0
$(1,1,1,1,1,1)$	720	0	0	0	0	0	0	0	0	0	0

PART II: We will do these problems together during the 2nd and 3rd hours. These problems are all interconnected and a mistake on one will make the others impossible to do. Each person in the class will be responsible for a single problem, but everyone is to help out. Failure to do so will result in a lower grade for this part of the exam.

Set

$$
\Delta\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)
$$

Let T be an injective tableau of shape $\lambda \vdash n$ (that is $T: D(\lambda) \rightarrow\{1,2, \ldots, n\}$ is an injective map). Define $G_{T}\left(X_{n}\right)$ to be the polynomial

$$
\Delta\left(x_{T_{(1,1)}}, x_{T_{(2,1)}}, \ldots, x_{T_{\left(\lambda_{1}^{\prime}, 1\right)}}\right) \Delta\left(x_{T_{(1,2)}}, x_{T_{(2,2)}}, \ldots, x_{T_{\left(\lambda_{2}^{\prime}, 2\right)}}\right) \cdots \Delta\left(x_{T_{\left(1, \lambda_{1}\right)}}, x_{T_{\left(2, \lambda_{1}\right)}}, \ldots, x_{T_{\left(\lambda_{\lambda_{1}}^{\prime}, \lambda_{1}\right)}}\right)
$$

(e.g. if T is the tableau

\section*{${ }^{7} 78$ \\ | 4 | 5 | 6 |
| :--- | :--- | :--- |
| | 2 | 3 | \\ | 12 | 3 |
| :--- | :--- | :--- |}

then $\left.G_{T}\left(X_{9}\right)=\Delta\left(x_{1}, x_{4}, x_{7}\right) \Delta\left(x_{2}, x_{5}, x_{8}\right) \Delta\left(x_{3}, x_{6}\right)\right)$. In particular, let $G_{\lambda}\left(X_{n}\right)$ be the polynomial associated to the tableau which has the numbers 1 through λ_{1}^{\prime} in the first column, $\lambda_{1}^{\prime}+1$ through $\lambda_{1}^{\prime}+\lambda_{2}^{\prime}$ in the second column, etc.

Let V^{λ} be the S_{n} module spanned by all of the polynomials $G_{T}\left(X_{n}\right)$ for T an injective tableau of shape λ.
(1) Show that for any partition λ, if $\pi \in S_{\lambda_{1}^{\prime}} \times S_{\lambda_{2}^{\prime}} \times \cdots \times S_{\lambda_{\lambda_{1}}^{\prime}} \subset S_{n}$ then $\pi G_{\lambda}\left(X_{n}\right)=$ $\epsilon(\pi) G_{\lambda}\left(X_{n}\right)$. Show that any polynomial with this property is divisible by $G_{\lambda}\left(X_{n}\right)$.
(2) Show that $V^{(2,2)}$ is spanned by the $G_{T}\left(X_{4}\right)$ where T is a standard tableau of shape $(2,2)$ and that they are linearly independent.
(3) Compute the S_{4}-character of this module. Show that it is irreducible.
(4) Give a basis for $V^{(2,2)} \otimes V^{(2,2)}$. Give the S_{4} character when S_{4} acts on it by the action $\pi(v \otimes w)=(\pi v) \otimes(\pi w)$. Break down this module into irreducible components.
(5) See the definition of the induced submodule (below). Give some sort of representation for $V^{(2,2)} \uparrow S_{S_{4}}^{S_{5}}$ and give a basis with a definition of the action of S_{5} on this basis. How does this module differ from $V^{(2,2,1)}$?
(6) Compute the character of this module and give a decomposition of the character into a sum of irreducible characters.
(7) Compute the character of the S_{4} module consisting of all products of $u v$, for $u, v \in V^{(2,2)}$. How does this differ from the module $V^{(2,2)} \otimes V^{(2,2)}$ in problem (4)?

If V is an H module with $H \subseteq G$ then the induced module V from H to G, Ind $V \uparrow_{H}^{G}$, is the space $(\mathbb{Q} G \otimes V) / W$ where W is the subspace linearly spanned by the elements of the form $(g h) \otimes v-g \otimes(h v)$ for $g \in G, h \in H$ and $v \in V$.

