FINAL EXAM - MATH 6161

JUNE 12, 2003

PART I: written and computational. Instructions: Do any 4 of the following 6 problems.

There are several ways of approaching each of these problems. I will give one or two solutions to each.

(1) Find the value of $\langle p_1^n, h_k h_{n-k} \rangle$. Use this to compute the dimension of the irreducible character χ^{μ} for μ a two row partition.

 $\begin{aligned} h_k &= p_1^k/k! + \text{ other terms and } h_{n-k} = p_1^{n-k}/(n-k)! + \text{ other terms so } h_k h_{n-k} = p_1^n/(k!(n-k)!) + \text{ other terms. } \langle p_1^n, h_k h_{n-k} \rangle = \langle p_1^n, p_1^n/(k!(n-k)!) \rangle = \frac{n!}{k!(n-k)!}. \end{aligned}$

 $\langle p_1^n, h_k h_{n-k} \rangle = p_{1^n}^{\perp}(h_k h_{n-k}) = p_{1^{n-1}}^{\perp}(p_1^{\perp}(h_k)h_{n-k} + h_k p_1^{\perp}(h_{n-k})) = \sum_{i=0}^n \binom{n}{i} p_{1^i}^{\perp}(h_k) p_{1^{n-i}}^{\perp}(h_{n-k})$ the only term in this sum which is non-zero is for i = k and $p_{(1^k)}^{\perp}(h_k) = 1$ therefore it is equal to $\binom{n}{k}$.

Now to consider the dimension of the irreducible character indexed by the partition μ when μ has only two rows we note that

,

$$\dim \chi^{(\mu_1,\mu_2)} = \left\langle p_{1^n}, s_{(\mu_1,\mu_2)} \right\rangle = \left\langle p_{1^n}, h_{\mu_1}h_{\mu_2} - h_{\mu_1+1}h_{\mu_2-1} \right\rangle = \binom{n}{\mu_1} - \binom{n}{\mu_1+1}$$

(2) Expand $h_{(3,2,1)}$ in the

(a) *p*-basis

 $h_3 = p_3/3 + p_{21}/2 + p_{1^3}/6$, $h_2 = p_2/2 + p_{1^2}/2$ and $h_1 = p_1$. Therefore take the product and find

$$h_{(3,2,1)} = 1/12\,p_{(1^6)} + 1/3\,p_{(21^4)} + 1/6\,p_{(31^3)} + 1/4\,p_{(2^21^2)} + 1/6\,p_{(321)}$$

(b) *e*-basis

$$h_{(3,2,1)} = \begin{vmatrix} e_1 & e_2 & e_3 \\ 1 & e_1 & e_2 \\ 0 & 1 & e_1 \end{vmatrix} \cdot \begin{vmatrix} e_1 & e_2 \\ 1 & e_1 \end{vmatrix} \cdot e_1$$

Also using the recurrence $h_k = \sum_{i=1}^k (-1)^{i-1} h_{k-i} e_i$, we have $h_1 = e_1$, $h_2 = h_1 e_1 - e_2 = e_{1^2} - e_2$, $h_3 = h_2 e_1 - h_1 e_2 + e_3 = e_{1^3} - 2e_{21} + e_3$.

$$h_{(3,2,1)} = e_{1^6} - 3 e_{21^4} + e_{31^3} + 2 e_{2^21^2} - e_{321}$$

(c) s-basis

Use the Pieri rule or the combinatorial interpretation in the notes. These are the easiest ways of solving this. $h_3 = s_{(3)}$, $h_{(3,2)} = s_{(3)}h_2 = s_{(3,2)} + s_{(4,1)} + s_{(5)}$, and finally:

$$\begin{aligned} h_{(3,2,1)} &= h_{(3,2)}h_1 = (s_{(3,2)} + s_{(4,1)} + s_{(5)})h_1 \\ &= (s_{(3,2,1)} + s_{(3,3)} + s_{(4,2)}) + (s_{(4,1,1)} + s_{(4,2)} + s_{(5,1)}) + (s_{(5,1)} + s_{(6)}) \\ &= s_{(3,2,1)} + s_{(3,3)} + 2s_{(4,2)} + s_{(4,1,1)} + 2s_{(5,1)} + s_{(6)} \end{aligned}$$

There is also one term for each column strict tableau with content (3, 2, 1).

(3) Use the following identity,

$$\Delta(p_{\mu}) = \sum_{\lambda} \frac{p_{\lambda}}{z_{\lambda}} \otimes \left(p_{\lambda}^{\perp} p_{\mu}\right)$$

to show in general that for any dual bases $\{a_{\lambda}\}_{\lambda}$ and $\{b_{\lambda}\}_{\lambda}$, and for any $f \in \Lambda$,

$$\Delta(f) = \sum_{\lambda} a_{\lambda} \otimes \left(b_{\lambda}^{\perp} f \right).$$

$$\Delta(p_{\mu}) = \sum_{\lambda} \sum_{\nu \vdash |\lambda|} \left\langle \frac{p_{\lambda}}{z_{\lambda}}, b_{\nu} \right\rangle a_{\nu} \otimes \left(p_{\lambda}^{\perp} p_{\mu} \right)$$
$$= \sum_{\nu} \sum_{\lambda \vdash |\nu|} a_{\nu} \otimes \left(\left\langle \frac{p_{\lambda}}{z_{\lambda}}, b_{\nu} \right\rangle p_{\lambda}^{\perp} p_{\mu} \right)$$
$$= \sum_{\nu} a_{\nu} \otimes \left(b_{\nu}^{\perp} p_{\mu} \right)$$

Now for any $f \in \Lambda$, $f = \sum_{\gamma} c_{\gamma} p_{\gamma}$ and we have

$$\Delta(f) = \sum_{\gamma} c_{\gamma} \Delta(p_{\gamma}) = \sum_{\gamma} c_{\gamma} \sum_{\mu} a_{\mu} \otimes \left(b_{\mu}^{\perp} p_{\gamma} \right) = \sum_{\mu} a_{\mu} \otimes \left(\sum_{\gamma} c_{\gamma} b_{\mu}^{\perp} p_{\gamma} \right) = \sum_{\mu} a_{\mu} \otimes \left(b_{\mu}^{\perp} f \right)$$

(4) Calculate $\langle h_{(3,3)}, h_{(3,2,1)} \rangle$, or equivalently, find the coefficient of $m_{(3,3)}$ in $h_{(3,2,1)}$.

Method 1 would be to expand these functions in the *p*-basis and compute the scalar product. The problem is there is a lot of room for error. Fine if you are a computer, but it is easy to make a mistake if you are not. The expansion we did in the first problem should help.

Alternatively we compute the expansion of h_3h_3 in variables to get a value and find the coefficient of the monomial $x_1^3x_2^2x_3$.

$$h_3[x_1 + x_2 + x_3] = x_1^3 + x_2^3 + x_3^3 + x_1x_2^2 + x_1x_3^2 + x_2x_1^2 + x_2x_3^2 + x_3x_1^2 + x_3x_2^2 + x_1x_2x_3^2 +$$

How can we get a monomial $x_1^3 x_2^2 x_3$? This is the number of ways of filling a Young diagram for the shape (3, 2, 1) with three 1s and three 2s such that the values are increasing in the rows. Like the following 6 diagrams

This combinatorial description is symmetric and we can also compute the number of Young diagrams with three 1s, two 2s and one 3 of shape (3,3) such that the entries are increasing in the rows.

2 2 3	1 2 3	1 2 2	1 1 3	1 1 2	1 1 1
1 1 1	1 1 2	1 1 3	1 2 2	1 2 3	2 2 3

(5) Determine the coefficient of z^0, z^1, z^2, z^3 and z^4 in the expression $m_{(3,2,1)}[X+z]$.

This can be done by definition, first expand the symmetric function in the *p*-basis, replace each p_k by a $\sum_i x_i^k + z^k$ and then take a coefficient, but we don't want to do that because it would take forever.

Method 2 would be to look in the notes at the example where we have $f[X + z]|_{z^k} = h_k^{\perp} f[X]$. Therefore the coefficient of z^0 in $m_{(3,2,1)}[X + z]$ is $m_{(3,2,1)}[X]$, the coefficient of z^k is $h_k^{\perp} m_{(3,2,1)}[X]$. If you want to reduce $h_k^{\perp} m_{(3,2,1)}[X]$ we can compute the coefficient of $m_{\lambda}[X]$ by taking the scalar product with $h_{\lambda}[X]$. That is, $\sum_{\lambda} \langle h_k^{\perp} m_{(3,2,1)}, h_{\lambda} \rangle m_{\lambda}[X] = \sum_{\lambda} \langle m_{(3,2,1)}, h_k h_{\lambda} \rangle m_{\lambda}[X]$ is the coefficient of z^k in $m_{(3,2,1)}[X + z]$ and since the h_{μ} and m_{λ} bases are dual we have that the coefficient of z^1 is $m_{(3,2)}[X], z^2$ is $m_{(3,1)}[X], z^3$ is $m_{(2,1)}[X]$ and z^4 will be 0.

But there is even an easier way to look at this problem. $m_{\lambda}[X+z]$ is a monomial symmetric function in the x_i variables and z variable. This means that it is equal to

$$m_{(3,2,1)}[X+z] = \sum_{\alpha \sim (3,2,1)} z^{\alpha_1} x_1^{\alpha_2} x_2^{\alpha_3} \cdots$$

In general, if $\alpha_1 = 0$ then $(\alpha_2, \alpha_3, \ldots) \sim (3, 2, 1)$ and the coefficient of z^0 is $m_{(3,2,1)}[X]$, if $\alpha_1 = 1$ then $(\alpha_2, \alpha_3, \ldots) \sim (3, 2)$ and the coefficient of z^1 is $m_{(3,2)}[X]$, if $\alpha_1 = 2$ then $(\alpha_2, \alpha_3, \ldots) \sim (3, 1)$ and the coefficient of z^2 is $m_{(3,1)}[X]$, if $\alpha_1 = 3$ then $(\alpha_2, \alpha_3, \ldots) \sim (2, 1)$ and the coefficient of z^3 is $m_{(2,1)}[X]$, if $\alpha_1 = 4$ then α does not sort to (3, 2, 1) and so the coefficient is 0.

(6) You are given below a table of coefficients of p_{λ}/z_{λ} in h_{μ} (μ indexes the left side of the table and λ the row across the top). Use this to calculate the first 6 rows of the character table for S_6 . Explain in a few words how you can easily find the last 5 rows from the first 5.

JUNE 12, 2003

	(1^6)	$(2, 1^4)$	$(2^2, 1^2)$	$(3, 1^3)$	(2^3)	(3, 2, 1)	$(4, 1^2)$	(3^2)	(4, 2)	(5, 1)	(6)
(6)	1	1	1	1	1	1	1	1	1	1	1
(5, 1)	6	4	2	3	0	1	2	0	0	1	0
(4, 2)	15	7	3	3	3	1	1	0	1	0	0
(4, 1, 1)	30	12	2	6	0	0	2	0	0	0	0
(3,3)	20	8	4	2	0	2	0	2	0	0	0
(3,2,1)	60	16	4	3	0	1	0	0	0	0	0
(3, 1, 1, 1)	120	24	0	6	0	0	0	0	0	0	0
(2, 2, 2)	90	18	6	0	6	0	0	0	0	0	0
(2, 2, 1, 1)	180	24	4	0	0	0	0	0	0	0	0
(2, 1, 1, 1, 1)	360	24	0	0	0	0	0	0	0	0	0
(1, 1, 1, 1, 1, 1)	720	0	0	0	0	0	0	0	0	0	0

Since $s_{(6)} = h_6$ the first row is done. Since $s_{(5,1)} = h_5h_1 - h_6$ we only need to subtract the first row from the second to obtain the character corresponding to (5,1). Similarly, we have $s_{(4,2)} = h_4h_2 - h_5h_1$, $s_{(3,3)} = h_3h_3 - h_4h_2$ and so the third row of the character table will be 3^{rd} row above minus the 2^{nd} and the fifth row of the character table will be the 5^{th} row of the table above minus the 3^{rd} . $h_{(4,1,1)} = s_{(4,1,1)} + s_{(4,2)} + 2s_{(5,1)} + s_{(6)}$. This means that to compute the 4^{th} row of the character table, take the 4^{th} row of the table above and subtract the first row, third row and 2 times the second row of the character table. Finally to compute $s_{(3,2,1)}$ we know the expansion of $h_{(3,2,1)}$ in the Schur basis from the second problem. But notice from that expansion that $s_{(3,2,1)} = h_{(3,2,1)} - h_{(4,1,1)} - s_{(3,3)} - s_{(4,2)}$ which says that the 6^{th} row of the character table will be the form that expansion the table above minus the 4^{th} row minus the 5^{th} row of the character table above minus the table above minus the 4^{th} row of the table above from that expansion that $s_{(3,2,1)} = h_{(3,2,1)} - h_{(4,1,1)} - s_{(3,3)} - s_{(4,2)}$ which says that the 6^{th} row of the character table will be the 6^{th} row of the table above minus the 4^{th} row minus the 5^{th} and 3^{rd} rows of the character table.

	(1^6)	$(2, 1^4)$	$(2^2, 1^2)$	$(3, 1^3)$	(2^3)	(3, 2, 1)	$(4, 1^2)$	(3^2)	(4, 2)	(5, 1)	(6)
(6)	1	1	1	1	1	1	1	1	1	1	1
(5, 1)	5	3	1	2	-1	0	1	-1	-1	0	-1
(4, 2)	9	3	1	0	3	0	-1	0	1	-1	0
(4, 1, 1)	10	2	-2	1	-2	-1	0	1	0	0	1
(3,3)	5	1	1	-1	-3	1	-1	2	-1	0	0
(3, 2, 1)	16	0	0	-2	0	0	0	-2	0	1	0

Finally the bottom half of this table can be obtained by multiplying the top half by the sign character which is given as

	(1^6)	$(2, 1^4)$	$(2^2, 1^2)$	$(3, 1^3)$	(2^3)	(3,2,1)	$(4, 1^2)$	(3^2)	(4, 2)	(5, 1)	(6)
(1^6)	1	-1	1	1	-1	-1	-1	1	1	1	-1