JUNE 12, 2003

PART I: written and computational. Instructions: Do any 4 of the following 6 problems.
There are several ways of approaching each of these problems. I will give one or two solutions to each.
(1) Find the value of $\left\langle p_{1}^{n}, h_{k} h_{n-k}\right\rangle$. Use this to compute the dimension of the irreducible character χ^{μ} for μ a two row partition.
$h_{k}=p_{1}^{k} / k!+$ other terms and $h_{n-k}=p_{1}^{n-k} /(n-k)!+$ other terms so $h_{k} h_{n-k}=p_{1}^{n} /(k!(n-$ $k)!)+$ other terms. $\left\langle p_{1}^{n}, h_{k} h_{n-k}\right\rangle=\left\langle p_{1}^{n}, p_{1}^{n} /(k!(n-k)!)\right\rangle=\frac{n!}{k!(n-k)!}$.
$\left\langle p_{1}^{n}, h_{k} h_{n-k}\right\rangle=p_{1^{n}}^{\perp}\left(h_{k} h_{n-k}\right)=p_{1^{n-1}}^{\perp}\left(p_{1}^{\perp}\left(h_{k}\right) h_{n-k}+h_{k} p_{1}^{\perp}\left(h_{n-k}\right)\right)=\sum_{i=0}^{n}\binom{n}{i} p_{1^{i}}^{\perp}\left(h_{k}\right) p_{1^{n-i}}^{\perp}\left(h_{n-k}\right)$ the only term in this sum which is non-zero is for $i=k$ and $p_{\left(1^{k}\right)}^{\perp}\left(h_{k}\right)=1$ therefore it is equal to $\binom{n}{k}$.

Now to consider the dimension of the irreducible character indexed by the partition μ when μ has only two rows we note that

$$
\operatorname{dim} \chi^{\left(\mu_{1}, \mu_{2}\right)}=\left\langle p_{1^{n}}, s_{\left(\mu_{1}, \mu_{2}\right)}\right\rangle=\left\langle p_{1^{n}}, h_{\mu_{1}} h_{\mu_{2}}-h_{\mu_{1}+1} h_{\mu_{2}-1}\right\rangle=\binom{n}{\mu_{1}}-\binom{n}{\mu_{1}+1}
$$

(2) Expand $h_{(3,2,1)}$ in the
(a) p-basis
$h_{3}=p_{3} / 3+p_{21} / 2+p_{1^{3}} / 6, h_{2}=p_{2} / 2+p_{1^{2}} / 2$ and $h_{1}=p_{1}$. Therefore take the product and find

$$
h_{(3,2,1)}=1 / 12 p_{\left(1^{6}\right)}+1 / 3 p_{\left(21^{4}\right)}+1 / 6 p_{\left(31^{3}\right)}+1 / 4 p_{\left(2^{2} 1^{2}\right)}+1 / 6 p_{(321)}
$$

(b) e-basis

$$
h_{(3,2,1)}=\left|\begin{array}{ccc}
e_{1} & e_{2} & e_{3} \\
1 & e_{1} & e_{2} \\
0 & 1 & e_{1}
\end{array}\right| \cdot\left|\begin{array}{cc}
e_{1} & e_{2} \\
1 & e_{1}
\end{array}\right| \cdot e_{1}
$$

Also using the recurrence $h_{k}=\sum_{i=1}^{k}(-1)^{i-1} h_{k-i} e_{i}$, we have $h_{1}=e_{1}, h_{2}=h_{1} e_{1}-e_{2}=$ $e_{1^{2}}-e_{2}, h_{3}=h_{2} e_{1}-h_{1} e_{2}+e_{3}=e_{1^{3}}-2 e_{21}+e_{3}$.

$$
h_{(3,2,1)}=e_{1^{6}}-3 e_{21^{4}}+e_{31^{3}}+2 e_{2^{2} 1^{2}}-e_{321}
$$

(c) s-basis

Use the Pieri rule or the combinatorial interpretation in the notes. These are the easiest ways of solving this. $h_{3}=s_{(3)}, h_{(3,2)}=s_{(3)} h_{2}=s_{(3,2)}+s_{(4,1)}+s_{(5)}$, and finally:

$$
\begin{aligned}
h_{(3,2,1)} & =h_{(3,2)} h_{1}=\left(s_{(3,2)}+s_{(4,1)}+s_{(5)}\right) h_{1} \\
& =\left(s_{(3,2,1)}+s_{(3,3)}+s_{(4,2)}\right)+\left(s_{(4,1,1)}+s_{(4,2)}+s_{(5,1)}\right)+\left(s_{(5,1)}+s_{(6)}\right) \\
& =s_{(3,2,1)}+s_{(3,3)}+2 s_{(4,2)}+s_{(4,1,1)}+2 s_{(5,1)}+s_{(6)}
\end{aligned}
$$

There is also one term for each column strict tableau with content $(3,2,1)$.

(3) Use the following identity,

$$
\Delta\left(p_{\mu}\right)=\sum_{\lambda} \frac{p_{\lambda}}{z_{\lambda}} \otimes\left(p_{\lambda}^{\perp} p_{\mu}\right)
$$

to show in general that for any dual bases $\left\{a_{\lambda}\right\}_{\lambda}$ and $\left\{b_{\lambda}\right\}_{\lambda}$, and for any $f \in \Lambda$,

$$
\begin{gathered}
\Delta(f)=\sum_{\lambda} a_{\lambda} \otimes\left(b_{\lambda}^{\perp} f\right) . \\
\Delta\left(p_{\mu}\right)=\sum_{\lambda} \sum_{\nu \vdash|\lambda|}\left\langle\frac{p_{\lambda}}{z_{\lambda}}, b_{\nu}\right\rangle a_{\nu} \otimes\left(p_{\lambda}^{\perp} p_{\mu}\right) \\
=\sum_{\nu} \sum_{\lambda \vdash|\nu|} a_{\nu} \otimes\left(\left\langle\frac{p_{\lambda}}{z_{\lambda}}, b_{\nu}\right\rangle p_{\lambda}^{\perp} p_{\mu}\right) \\
=\sum_{\nu} a_{\nu} \otimes\left(b_{\nu}^{\perp} p_{\mu}\right)
\end{gathered}
$$

Now for any $f \in \Lambda, f=\sum_{\gamma} c_{\gamma} p_{\gamma}$ and we have

$$
\Delta(f)=\sum_{\gamma} c_{\gamma} \Delta\left(p_{\gamma}\right)=\sum_{\gamma} c_{\gamma} \sum_{\mu} a_{\mu} \otimes\left(b_{\mu}^{\perp} p_{\gamma}\right)=\sum_{\mu} a_{\mu} \otimes\left(\sum_{\gamma} c_{\gamma} b_{\mu}^{\perp} p_{\gamma}\right)=\sum_{\mu} a_{\mu} \otimes\left(b_{\mu}^{\perp} f\right)
$$

(4) Calculate $\left\langle h_{(3,3)}, h_{(3,2,1)}\right\rangle$, or equivalently, find the coefficient of $m_{(3,3)}$ in $h_{(3,2,1)}$.

Method 1 would be to expand these functions in the p-basis and compute the scalar product. The problem is there is a lot of room for error. Fine if you are a computer, but it is easy to make a mistake if you are not. The expansion we did in the first problem should help.

Alternatively we compute the expansion of $h_{3} h_{3}$ in variables to get a value and find the coefficient of the monomial $x_{1}^{3} x_{2}^{2} x_{3}$.

$$
h_{3}\left[x_{1}+x_{2}+x_{3}\right]=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{1}^{2}+x_{2} x_{3}^{2}+x_{3} x_{1}^{2}+x_{3} x_{2}^{2}+x_{1} x_{2} x_{3}
$$

How can we get a monomial $x_{1}^{3} x_{2}^{2} x_{3}$? This is the number of ways of filling a Young diagram for the shape $(3,2,1)$ with three 1 s and three 2 s such that the values are increasing in the rows. Like the following 6 diagrams

This combinatorial description is symmetric and we can also compute the number of Young diagrams with three 1 s , two 2 s and one 3 of shape $(3,3)$ such that the entries are increasing in the rows.

(5) Determine the coefficient of $z^{0}, z^{1}, z^{2}, z^{3}$ and z^{4} in the expression $m_{(3,2,1)}[X+z]$.

This can be done by definition, first expand the symmetric function in the p-basis, replace each p_{k} by a $\sum_{i} x_{i}^{k}+z^{k}$ and then take a coefficient, but we don't want to do that because it would take forever.

Method 2 would be to look in the notes at the example where we have $\left.f[X+z]\right|_{z^{k}}=$ $h_{k}^{\perp} f[X]$. Therefore the coefficient of z^{0} in $m_{(3,2,1)}[X+z]$ is $m_{(3,2,1)}[X]$, the coefficient of z^{k} is $h_{k}^{\perp} m_{(3,2,1)}[X]$. If you want to reduce $h_{k}^{\perp} m_{(3,2,1)}[X]$ we can compute the coefficient of $m_{\lambda}[X]$ by taking the scalar product with $h_{\lambda}[X]$. That is, $\sum_{\lambda}\left\langle h_{k}^{\perp} m_{(3,2,1)}, h_{\lambda}\right\rangle m_{\lambda}[X]=$ $\sum_{\lambda}\left\langle m_{(3,2,1)}, h_{k} h_{\lambda}\right\rangle m_{\lambda}[X]$ is the coefficient of z^{k} in $m_{(3,2,1)}[X+z]$ and since the h_{μ} and m_{λ} bases are dual we have that the coefficient of z^{1} is $m_{(3,2)}[X], z^{2}$ is $m_{(3,1)}[X], z^{3}$ is $m_{(2,1)}[X]$ and z^{4} will be 0 .

But there is even an easier way to look at this problem. $m_{\lambda}[X+z]$ is a monomial symmetric function in the x_{i} variables and z variable. This means that it is equal to

$$
m_{(3,2,1)}[X+z]=\sum_{\alpha \sim(3,2,1)} z^{\alpha_{1}} x_{1}^{\alpha_{2}} x_{2}^{\alpha_{3}} \ldots
$$

In general, if $\alpha_{1}=0$ then $\left(\alpha_{2}, \alpha_{3}, \ldots\right) \sim(3,2,1)$ and the coefficient of z^{0} is $m_{(3,2,1)}[X]$, if $\alpha_{1}=1$ then $\left(\alpha_{2}, \alpha_{3}, \ldots\right) \sim(3,2)$ and the coefficient of z^{1} is $m_{(3,2)}[X]$, if $\alpha_{1}=2$ then $\left(\alpha_{2}, \alpha_{3}, \ldots\right) \sim(3,1)$ and the coefficient of z^{2} is $m_{(3,1)}[X]$, if $\alpha_{1}=3$ then $\left(\alpha_{2}, \alpha_{3}, \ldots\right) \sim(2,1)$ and the coefficient of z^{3} is $m_{(2,1)}[X]$, if $\alpha_{1}=4$ then α does not sort to $(3,2,1)$ and so the coefficient is 0 .
(6) You are given below a table of coefficients of $p_{\lambda} / z_{\lambda}$ in h_{μ} (μ indexes the left side of the table and λ the row across the top). Use this to calculate the first 6 rows of the character table for S_{6}. Explain in a few words how you can easily find the last 5 rows from the first 5 .

$\left(1^{6}\right)$							$\left(2,1^{4}\right)$	$\left(2^{2}, 1^{2}\right)$	$\left(3,1^{3}\right)$	$\left(2^{3}\right)$	$(3,2,1)$
$\left(4,1^{2}\right)$	$\left(3^{2}\right)$	$(4,2)$	$(5,1)$	(6)							
(6)	1	1	1	1	1	1	1	1	1	1	1
$(5,1)$	6	4	2	3	0	1	2	0	0	1	0
$(4,2)$	15	7	3	3	3	1	1	0	1	0	0
$(4,1,1)$	30	12	2	6	0	0	2	0	0	0	0
$(3,3)$	20	8	4	2	0	2	0	2	0	0	0
$(3,2,1)$	60	16	4	3	0	1	0	0	0	0	0
$(3,1,1,1)$	120	24	0	6	0	0	0	0	0	0	0
$(2,2,2)$	90	18	6	0	6	0	0	0	0	0	0
$(2,2,1,1)$	180	24	4	0	0	0	0	0	0	0	0
$(2,1,1,1,1)$	360	24	0	0	0	0	0	0	0	0	0
$(1,1,1,1,1,1)$	720	0	0	0	0	0	0	0	0	0	0

Since $s_{(6)}=h_{6}$ the first row is done. Since $s_{(5,1)}=h_{5} h_{1}-h_{6}$ we only need to subtract the first row from the second to obtain the character corresponding to $(5,1)$. Similarly, we have $s_{(4,2)}=h_{4} h_{2}-h_{5} h_{1}, s_{(3,3)}=h_{3} h_{3}-h_{4} h_{2}$ and so the third row of the character table will be $3^{\text {rd }}$ row above minus the $2^{\text {nd }}$ and the fifth row of the character table will be the $5^{\text {th }}$ row of the table above minus the $3^{\text {rd }}$. $h_{(4,1,1)}=s_{(4,1,1)}+s_{(4,2)}+2 s_{(5,1)}+s_{(6)}$. This means that to compute the $4^{\text {th }}$ row of the character table, take the $4^{\text {th }}$ row of the table above and subtract the first row, third row and 2 times the second row of the character table. Finally to compute $s_{(3,2,1)}$ we know the expansion of $h_{(3,2,1)}$ in the Schur basis from the second problem. But notice from that expansion that $s_{(3,2,1)}=h_{(3,2,1)}-h_{(4,1,1)}-s_{(3,3)}-s_{(4,2)}$ which says that the $6^{\text {th }}$ row of the character table will be the $6^{\text {th }}$ row of the table above minus the $4^{\text {th }}$ row minus the $5^{\text {th }}$ and $3^{\text {rd }}$ rows of the character table.

$\left(1^{6}\right)$							$\left(2,1^{4}\right)$	$\left(2^{2}, 1^{2}\right)$	$\left(3,1^{3}\right)$	$\left(2^{3}\right)$	$(3,2,1)$
$\left(4,1^{2}\right)$	$\left(3^{2}\right)$	$(4,2)$	$(5,1)$	(6)							
(6)	1	1	1	1	1	1	1	1	1	1	1
$(5,1)$	5	3	1	2	-1	0	1	-1	-1	0	-1
$(4,2)$	9	3	1	0	3	0	-1	0	1	-1	0
$(4,1,1)$	10	2	-2	1	-2	-1	0	1	0	0	1
$(3,3)$	5	1	1	-1	-3	1	-1	2	-1	0	0
$(3,2,1)$	16	0	0	-2	0	0	0	-2	0	1	0

Finally the bottom half of this table can be obtained by multiplying the top half by the sign character which is given as

$\left(1^{6}\right)$					$\left(2,1^{4}\right)$	$\left(2^{2}, 1^{2}\right)$	$\left(3,1^{3}\right)$	$\left(2^{3}\right)$	$(3,2,1)$	$\left(4,1^{2}\right)$	$\left(3^{2}\right)$
$\left(1^{6}\right)$	1	-1	1	1	-1	-1	-1	1	1	1	-1

