HOMEWORK PROBLEMS - MATH 6161

HOMEWORK \# 1 ON PARTITIONS AND SYMMETRIC FUNCTIONS

(1) In the exam we had a family of D_{4}-modules P_{k} for $k \geq 0$ which were the polynomials of degree k in the variables $a_{0}, a_{1}, b_{0}, b_{1}$. In addition we constructed the character table for D_{4} and found that there were four 1-dimensional characters and a fifth character $\chi^{(5)}$ that was 2 -dimensional. Show that

$$
\left\langle P_{k}, \chi^{(5)}\right\rangle=0
$$

for all $k>0$.
(2) The union of two partitions $\lambda \cup \mu$ is the smallest partition whose diagram contains the diagram of both λ and μ. Show that the union of all partitions of size n is a partition of size $\sum_{k=1}^{n} d(k)$ where $d(k)$ is the number of divisors of k.
(3) The dominance order is defined to be $\lambda<\mu$ if and only if $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{i}<\mu_{1}+\mu_{2}+\cdots+\mu_{i}$ for all i. Show that $\lambda<\mu$ if and only if $\mu^{\prime}<\lambda^{\prime}$.
(4) The q-binomial coefficient is defined

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[n-k]_{q}![k]_{q}!}
$$

where $[n]_{q}=\frac{1-q^{n}}{1-q},[n]_{q}!=[n]_{q}[n-1]_{q} \cdots[1]_{q}$. Show

$$
e_{k}\left[\frac{1-q^{n}}{1-q}\right]=q^{\binom{k}{2}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}
$$

and

$$
h_{k}\left[\frac{1-q^{n}}{1-q}\right]=\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right]_{q}
$$

using the recurrence $e_{k}[X+z]=e_{k}[X]+z e_{k-1}[X]$ and $h_{k}[X+z]=\sum_{i=0}^{k} z^{i} h_{k-i}[X]$.
(5) Use the computer to calculate the following scalar products
(a) $\left\langle h_{(2,2,1)}, p_{(3,2)}\right\rangle$
(b) $\left\langle h_{(3,2)}, p_{(3,2)}\right\rangle$
(c) $\left\langle h_{(3,2)}, p_{(2,2,1)}\right\rangle$
(d) $\left\langle h_{(3,2)}, h_{(4,1)}\right\rangle$
(e) $\left\langle h_{(3,2)}, h_{(3,1,1)}\right\rangle$
(f) $\left\langle h_{(3,2)}, h_{(2,2,1)}\right\rangle$
(6) Either use the computer to conjecture the following formulas or prove them. They may all be calculated directly using formulas in chapter 1.
(a) $\left\langle h_{n}, p_{\lambda}\right\rangle$
(b) $\left\langle e_{n}, p_{\lambda}\right\rangle$
(c) $\left\langle p_{n}, h_{\lambda}\right\rangle$
(d) $\left\langle p_{1^{n}}, h_{\lambda}\right\rangle$
(e) $\left\langle p_{\lambda}, h_{\lambda}\right\rangle$
(f) $\left\langle h_{n}, h_{n}\right\rangle$
(g) $\left\langle e_{n}, h_{n}\right\rangle$
(h) $\left\langle h_{n}, h_{\lambda}\right\rangle$
(i) $\left\langle e_{n}, h_{\lambda}\right\rangle$
(7) Make a 5×5 table with labels $p_{\mu}, h_{\mu}, e_{\mu}, m_{\mu}$ and f_{μ} along the left of the table and $p_{\lambda}, h_{\lambda}, e_{\lambda}, m_{\lambda}$ and f_{λ} along the top of the table. Fill the entry with a_{μ} on the left and b_{λ} on the top with the coefficient of b_{λ} in a_{μ} as it is given in the text handed to you. Which entries were not discussed? There should be 4 which were not given a name in the text. Label these entries $F_{\lambda \mu}, G_{\lambda \mu}, H_{\lambda \mu}, I_{\lambda \mu}$. Find some sort of formula for these coefficients which allows you to determine the sign of the entry which is dependent on $\ell(\lambda), \ell(\mu)$ and n (the sizes of the partitions λ and μ).
(8) Show that $\left\langle e_{\lambda}, h_{\mu}\right\rangle \neq 0$ if and only if $\lambda^{\prime} \geq \mu$ and $\left\langle e_{\mu^{\prime}}, h_{\mu}\right\rangle=1$.
(9) Use Maple to create the transition matrix $A=\left[A_{\lambda \mu}\right]$ with $\lambda, \mu \vdash 6$. You may enter this by hand, but you might also want to use the functions
[seq(coeff(mexpr, m[op(mu)]), mu = Par(6))];
where mexpr is an expression in the monomial basis of degree 6 (in this case you want it to be tom (h_{λ})). This matrix should have the property that $A \vec{m}=\vec{h}$ where \vec{m} is a column vector. Verify this with the command:
map(toh, evalm(A\&*[seq([m[op(la)]],la=Par(6))]));
What do the entries of this matrix represent in terms of scalar products? Observe and prove the following two properties of this matrix: 1 . the entries are positive integers and 2 . $A=A^{t}$. Use Maple to compute the LU-decomposition of this matrix (that is find matricies L, which is lower triangular, and U, which is upper triangular, such that $A=L U$) What do the entries of L and U represent? (see LUdecomp in the linalg package). Prove that $U=L^{t}$. What does the column vector $U \vec{m}=L^{-1} \vec{h}$ represent?

