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Finally, we briefly consider the parabolic version of Gλ[X; q] which are analogs of the functions
introduced in [16, 17]. The definition follows the generalization of Jing’s Hall-Littlewood vertex
operator to a more general class of operators, as was considered in [18]. The coefficients that appear
in this generalization can be viewed as q-analogs of the structure coefficients of Schur’s Q-functions.

2. Notation and Definitions

2.1. Symmetric functions, partitions, tableaux. Define the ring of symmetric functions as the
polynomial ring Λ = C[p1, p2, p3, . . . ] with deg(pk) = k. A typical monomial of degree n in this ring
will be pλ1pλ2 · · · pλ� := pλ, where

∑
i λi = n and a basis will indexed by the sequences λ such that

λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0.
The sequence λ is a partition of n (denoted by λ � n) if the entries are non-negative integers and

are is weakly decreasing. The size of λ is given by |λ| :=
∑

i λi = n. The entries of λ are called
the parts of the partition. The number of parts that are of size i in λ will be represented by mi(λ)
and the total number of non-zero parts is represented by �(λ) =

∑
imi(λ). A common statistic on

partitions λ is n(λ) :=
∑

i(i− 1)λi.
The dominance order, λ ≤ µ if and only if

∑k
i=1 λi ≤

∑k
i=1 µi for all 1 ≤ k ≤ �(λ), is a partial

order on partitions. Using this partial order, the operators

Rijλ = (λ1, . . . , λi + 1, . . . , λj − 1, . . . , λ�(λ))

for 1 ≤ i ≤ j ≤ �(λ) have the property that Rijλ ≥ λ if Rijλ is a partition.
We will consider three fundamental bases of Λ here. Following the notation of [14], we define the

homogeneous (complete) symmetric functions are hλ := hλ1hλ2 · · ·hλ�(λ) where hn =
∑

λ�n pλ/zλ

and zλ =
∏�(λ)

i=1 i
mi(λ)mi(λ)!. The elementary symmetric functions are eλ := eλ1eλ2 · · · eλ�(λ) where

en =
∑

λ�n(−1)n−�(λ)pλ/zλ. By convention we set p0 = h0 = e0 = 1 and p−k = h−k = e−k = 0 for
k > 0. The Schur functions are given by sλ = det |hλi+i−j |1≤i,j≤�(λ). The sets {pλ}λ�n, {hλ}λ�n,
{eλ}λ�n and {sλ}λ�n all form bases for the symmetric functions of degree n.

The fundamental theorem of symmetric functions says that the subring C[p1, p2, . . . , pn] is iso-
morphic to the ring of symmetric polynomials ΛXn = C[x1, x2, . . . , xn]Sn (the polynomials in n
variables which are invariant under the action σ(xi) = xσ(i) for any σ ∈ Sn) using the map that
sends pk → xk1 + xk2 + · · ·+ xkn. The space ΛX of symmetric series in an infinite number of variables
x1, x2, x3, . . . of finite degree is isomorphic to Λ under the map that sends pk → xk1 + xk2 + xk3 + · · · .

Much of our notation for the symmetric functions thus far has reflected that of [14], but we
will concentrate on operations involving the Hopf algebra structure of the symmetric functions and
specialization of variables. To this end we extend the notation for these maps in a natural manner
and represent a set of variables as a sum X = x1 + x2 + x3 + . . . and act on this sum with elements
of Λ. We define pk[X] = xk1 + xk2 + xk3 + · · · and for any P ∈ Λ we set P [X] equal to P with pk
replaced by pk[X]. That is for P =

∑
λ cλpλ,

P [X] =
∑
λ

cλpλ1 [X]pλ2 [X] · · · pλ�(λ) [X].(1)

It is clearly true for two sets of variables X and Y = y1+y2+y3+· · · that pk[X+Y ] = pk[X]+pk[Y ]
and to extend this linearly we set pk[X − Y ] = pk[X] − pk[Y ] and pk[XY ] = pk[X]pk[Y ]. We will
also consider the Cauchy element

Ω =
∑
n≥0

∑
λ�n

pλ/zλ =
∑
n≥0

hn(2)

in the completion of Λ. This special element has the property that Ω[X+Y ] = Ω[X]Ω[Y ], Ω[X−Y ] =
Ω[X]/Ω[Y ] and Ω[X] =

∏
i(1− xi)−1.

Notice that for an arbitrary element c ∈ C, we have pk[cX] = cpk[X]. This implies that cX does
not represent cx1 + cx2 + cx3 + · · · , instead it represents c ‘copies of’ the variables X. We introduce
a special parameter q or t that interacts with the variable set in that pk[qX] = qkpk[X]. Sometimes
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this element will be an arbitrary parameter and other times we will specialize it to values in the base
field C. To obtain operations such as replacing xi by cxi in a symmetric function we use our special
parameter q and at the end of our calculations we specialize this parameter to c. In particular, the
operation of replacing xi by −xi is useful and we will represent it with the notation

P [εX] = P [qX]
∣∣∣
q=−1

.(3)

We also have the relations pk[εX] = (−1)kpk[X], Ω[εX] =
∏

i(1 + xi)−1 and hn[X] = en[−εX]. Of
course if the symmetric function P or the set of variables X already has a parameter q, the one that
is set to −1 is unique and does not interfere with parameters in P or X.

It follows from the definition of the Schur function and the expansion of the Vandermonde de-
terminant det|xj−1

i |1≤i,j≤n =
∏

1≤i<j≤n(xi − xj) that sλ[X] =
∏

1≤i<j≤n(1 − Rij)hλ[X], where
Rijhλ[X] = hRijλ[X]. Since the coefficient of zλ in Ω[ZnX] is hλ[X] and (zj/zi)

−1
zλ = zRijλ, then

the Schur function is equal to

sλ[X] = Ω[ZnX]
∏

1≤i<j≤n
(1− zj/zi)

∣∣∣
zλ
.(4)

Remark: We follow [14] in the use of Rij acing on symmetric functions, however one should note
that these operators are not associative. This issue can be resolved however and is dealt with in
more detail in [1] or [8].

Now for any symmetric function P ∈ Λ define S(z)P [X] := P
[
X − 1

z

]
Ω[zX]. Since we have that

S(z1)S(z2) · · ·S(zn)1 = Ω[ZnX]
∏

1≤i<j≤n(1 − zj/zi), then the operator SmP [X] = S(z)P [X]
∣∣∣
zm

raises the degree of a symmetric function by m and has the property that Sm(sλ[X]) = s(m,λ)[X]
as long as m ≥ λ1. The Sm operators also have the commutation relations SmSm+1 = 0 and
SmSn = −Sn−1Sm+1.

A Young diagram for a partition will be a collection of cells of the integer grid lying in the first
quadrant. For a partition λ, Y (λ) = {(i, j) : 0 ≤ j < �(λ) and 0 ≤ i ≤ λj}. The reason why we
consider empty cells rather than say points is because we wish to consider fillings of these cells. A
tableau is a map from the set Y (λ) to N, this may be represented on a Young diagram by writing
integers within the cells of a graphical representation of a Young diagram (see figure 1). The shape
of the tableau is the partition λ. We say that a tableau T is column strict if T (i, j) ≤ T (i + 1, j)
and T (i, j) < T (i, j+1) whenever the points (i+1, j) or (i, j+1) are in Y (λ). Let mk(T ) represent
the number of points p in Y (λ) such that T (p) = k. The vector (m1(T ),m2(T ), . . . ) is the content
of the tableau T .

The Pieri rule describes a combinatorial method for computing the product of hm[X] and sµ[X]
expanded in the Schur basis. We will use the notation λ/µ ∈ Hm to represent that |λ| − |µ| = m
and for 1 ≤ i ≤ �(λ), µi ≤ λi and µi ≥ λi+1. It may be easily shown that

hm[X]sµ[X] =
∑

λ/µ∈Hm

sλ[X].(5)

This gives a method for computing the expansion of the hµ[X] basis in terms of the Schur
functions. Consider the coefficients Kλµ defined by the expression

hµ[X] =
∑
λ�|µ|

Kλµsλ[X].(6)

Kλµ are called the Kostka numbers and are equal to the number of column strict tableaux of shape
λ and content µ. Now define a q analog of the {hλ} basis by setting

Hλ[X; q] =
∏
i<j

1−Rij

1− qRij
hλ[X] =

∏
i<j

(1 + (q − 1)Rij + (q2 − q)R2
ij + · · · )hλ[X].(7)

Since the coefficient of zλ in Ω[ZkX] is hλ[X], it is clear that we have the formula

Hλ[X; q] = Ω[ZkX]
∏

1≤i<j≤k

1− zj/zi
1− qzj/zi

∣∣∣
zλ
.(8)
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This leads us to a ‘vertex operator’ definition for these functions. If we define the operation
H(z)P [X] = P

[
X − 1−q

z

]
Ω[zX], then

H(z1)H(z2) · · ·H(zk)1 = Ω[ZkX]
∏

1≤i<j≤k

1− zj/zi
1− qzj/zi

,(9)

and therefore defining the operator Hm that raises the degree of a symmetric function by m as
HmP [X] := H(z)P [X]

∣∣∣
zm

, has the property that HmHλ[X; q] = H(m,λ)[X; q] as long as m ≥ λ1.
The vertex operator also satisfies the relations Hm−1Hm = qHmHm−1 and Hm−1Hn−qHmHn−1 =
qHnHm−1 −Hn−1Hm.

The functionsHλ[X; q] interpolate between the functions sλ[X] = Hλ[X; 0] and hλ[X] = Hλ[X; 1].
The Kostka-Foulkes polynomials are defined as the q-polynomial coefficient of sλ[X] in Hµ[X; q] and
hence we have the expansion analogous to (6).

Hµ[X; q] =
∑
λ�|µ|

Kλµ(q)sλ[X].(10)

The coefficients Kλµ(q) are clearly polynomials in q, but it is surprising to find that the coefficients
of the polynomials are non-negative integers. A defining recurrence can be derived Kλµ(q) in terms
of the Kostka-Foulkes polynomials indexed by partitions of size |µ| − µ1 using the formula for Hm.
This recurrence is often referred to as the ‘Morris recurrence’ for the Kostka-Foulkes polynomials.

The Kostka-Foulkes polynomials and the generating functions Hµ[X; q] have the following impor-
tant properties which we simply list here so that we may draw a connection to analogous formulae.
For a more detailed reference of these sorts of properties we refer the interested reader to the excellent
survey article [1].

1. Kλµ(q) has non-negative integer coefficients.
2. Kλµ(q) =

∑
T q

c(T ), where the sum is over all column strict tableaux of shape λ and content
µ and c(T ) denotes the charge of a tableau T (see [12]). In addition there is a combinatorial
interpretation for these coefficients in terms of objects called rigged configurations (see [10]).

3. The degree in q of Kλµ(q) is n(µ)− n(λ).
4. Kλµ(0) = δλµ which implies Hµ[X; 0] = sµ[X], Kλµ(1) = Kλµ, so that Hµ[X; 1] = hµ[X],

Kλλ(q) = 1 and K(|µ|)µ(q) = qn(µ). We also have that Kλµ(q) = 0 if λ < µ.

5. H(1n)[X; q] = en

[
X

1−q

]
(q; q)n where (q; q)n =

∏n
i=1(1− qi).

6. If ζ is kth root of unity, Hµ[X; ζ] factors into a product of symmetric functions.
7. Set K ′µλ(q) := qn(λ)−n(µ)Kµλ(1/q), then K ′µλ(q) ≥ K ′µν(q) for λ ≤ ν.

8. Kλ+(a),µ+(a)(q) ≥ Kλ,µ(q), where λ + (a) represents the partition λ with a part of size a
inserted into it.

9. Kλµ(q) =
∑

w∈Sn sign(w)Pq(w(λ + ρ) − (µ + ρ)) where Pq(α) is the coefficient of xα in∏
1≤i<j≤n(1−qxi/xj)−1, a q analog of the Kostant partition function and ρ = (�(µ)−1, �(µ)−

2, . . . , 1, 0).
10. Hµ[X; q]Hλ[X; q] =

∑
γ d

ν
λµ(q)Hν [X; q], for some coefficients dνλµ(q) with the property that

if the Littlewood-Richardson coefficient cνλµ = 0 then dνλµ(q) = 0. These coefficients are a
transformation of the Hall algebra structure coefficients.

11. For the scalar product 〈sλ[X], sµ[X]〉 = δλµ, we have that 〈Hλ[X; q], Hµ[X(1− q); q]〉 = 0 if
λ �= µ.

2.2. Schur’s Q-functions, strict partitions, and marked shifted tableaux. The Q-function
algebra is a sub-algebra of the symmetric functions Γ = C[p1, p3, p5, . . . ]. A typical monomial in
this algebra will be pλ, where λ is a partition and λi is odd. A partition λ is strict if λi > λi+1 for
all 1 ≤ i ≤ �(λ)− 1 and a partition λ is odd if λi is odd for 1 ≤ i ≤ �(λ). We will use the notation
λ �s n (respectively λ �o n) to denote that λ is a partition of size n that is strict (respectively odd).
Note that the number of strict partitions of size n and the number of odd partitions of size n is the
same (proof: write out a generating function for each sequence).
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4 6 7
3 5 5
2 2 3 4 6
1 1 1 1 2 3

5′
3′ 3 4 5

2′ 2 3′ 4′ 4
1′ 1 2′ 2 2 3 3

Figure 1. The diagram on the left represents a column strict tableau of shape
(6, 5, 3, 3) and content (4, 3, 3, 2, 2, 2, 1). The diagram on the right represents a
shifted marked tableau of shape (7, 5, 4, 1) and content (2, 5, 5, 3, 2). This tableau
has labels which are marked on the diagonal.

The analog of the homogeneous and elementary symmetric functions in Γ are the functions
qλ := qλ1qλ2 · · · qλ�(λ) , where qn =

∑
λ�on 2�(λ)pλ/zλ. Define an algebra morphism θ : Λ→ Γ by the

action on the pn generators as θ(pn) = (1− (−1)n)pn. That is θ(pn) = 2pn if n is odd and θ(pn) = 0
for n even. θ has the property that θ(hn) = θ(en) = qn and may be represented in our notation
as θ(pn[X]) = pn[(1 − ε)X]. Under this morphism, our Cauchy element may also be considered a
generating function for the qn elements since

Ω[(1− ε)X] =
∑
n≥0

qn[X] =
∏
i

1 + xi
1− xi

.(11)

It follows that {pλ}λ�on, {qλ}λ�on, {qλ}λ�sn are all bases for the subspace of Q-functions of degree
n. Another fundamental basis for this space are the Schur’s Q-functions Qλ[X] = θ(Hλ[X;−1]).
These functions hold a similar place in the Q-function algebra that the Schur functions hold in Λ.
In particular, {Qλ[X]}λ�sn is a basis for the Q-functions of degree n.

In analogy with the Schur functions, Qλ[X] may also be defined with a raising operator formula
by setting q = −1 and applying the θ homomorphism to equation (7). We arrive at the formula:

Qλ[X] =
∏
i<j

1−Rij

1 +Rij
qλ[X] =

∏
i<j

(1− 2Rij + 2R2
ij − · · · )qλ[X],(12)

where the operators now act as Rijqλ[X] = qRijλ[X]. Furthermore, they have a formula as the
coefficient in a generating function:

Qλ[X] = Ω[(1− ε)ZnX]
∏

1≤i<j≤n

1− zj/zi
1 + zj/zi

∣∣∣
zλ
.(13)

As with Schur functions and the Hall-Littlewood functions, the raising operator formula leads us
to a vertex operator definition. By setting Q(z)P [X] = P

[
X − 1

z

]
Ω[(1 − ε)zX], it is easily shown

that Q(z1)Q(z2) · · ·Q(zn)1 = Ω[(1 − ε)ZnX]
∏

1≤i<j≤n
1−zj/zi
1+zj/zi

, and hence if we set QmP [X] =

Q(z)P [X]
∣∣∣
zm

then Qm(Qλ[X]) = Q(m,λ)[X] as long as m > λ1. The commutation relations for the
Qm are

QmQn = −QnQm for m �= −n,(14)

QmQ−m = 2(−1)m −Q−mQm if m �= 0,(15)

Q2
m = 0 if m �= 0 and Q2

0 = 1.(16)

These formulas allow us to straighten the Qµ[X] functions when they are not indexed by a strict
partition.

A shifted Young diagram for a partition will again be a collection of cells lying in the first
quadrant. For a strict partition λ, let Y S(λ) = {(i, j) : 0 ≤ j ≤ �(λ) and j − 1 ≤ i ≤ λj + j − 1}. A
marked shifted tableau T of shape λ is a map from Y S(λ) to the set of marked integers {1′ < 1 <
2′ < 2 < . . . } that satisfy the following conditions
• T (i, j) ≤ T (i+ 1, j) and T (i, j) ≤ T (i, j + 1)
• If T (i, j) = k for some integer k (i.e. has an unmarked label) then T (i, j + 1) �= k
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• If T (i, j) = k′ for some marked label k′ then T (i+ 1, j) �= k′.
We may represent these objects graphically with a diagram representing λ and the cells filled

with the marked integer alphabet. If T is a marked shifted tableau, then we will set mi(T ) as the
number of occurrences of i and i′ in T . The sequence (m1(T ),m2(T ),m3(T ), . . . ) is the content of
T .

The combinatorial definition of the marked shifted tableaux is defined so that it reflects the
change of basis coefficients between the qλ and Qµ basis. The rule for computing the product of
qm[X] and Qµ[X] when expanded in the Schur Q-functions is the analog of the Pieri rule for the Γ
space. If λ/µ ∈ Hm then a(λ/µ) will represent 1+ the number of 1 < j ≤ �(λ) such that λj > µj
and µj−1 > λj . We may show that

qm[X]Qµ[X] =
∑

λ/µ∈Hm

2a(λ/µ)−�(λ)+�(µ)Qλ[X].(17)

Denote by Lλµ the number of marked shifted tableaux T of shape λ and content µ (where λ is a
strict partition) such that T (i, i) is not a marked integer. We may expand the function qµ[X] in
terms of the Q-functions using (17) to show

qµ[X] =
∑
λ�|µ|

LλµQλ[X].(18)

3. The Q-Hall-Littlewood basis Gλ(x; q) for the algebra Γ

Note: From here, unless otherwise stated, all partitions are considered strict.

3.1. Raising operator formula. We define the following analog of the Hall-Littlewood functions
in the subalgebra Γ

Gλ[X; q] :=
∏

1≤i<j≤n

(
1 + qRij

1− qRij

)(
1−Rij

1 +Rij

)
qλ[X] =

∏
1≤i<j≤n

(
1 + qRij

1− qRij

)
Qλ[X].(19)

We call the functions Gλ ∈ Γ⊗C C(q) the Q-Hall-Littlewood functions.
In Γ⊗ C(q) this family can be expressed in the basis of Q-functions as

Gµ[X; q] =
∑
λ

Lλµ(q)Qλ[X],(20)

which can be viewed as a q-analog of (18). We call the coefficients Lλµ(q) the Q-Kostka polynomials.
We shall see that this family of polynomials shares many of the same properties with the classical
Kostka-Foulkes polynomials. Tables of these coefficients are given in an Appendix. It follows
from (19) that Lλµ(q) have integer coefficients and Lλµ(q) = 0 if λ < µ. This shows

Proposition 1. The Gλ, λ strict, form a Z-basis for Γ⊗Z Z(q).

The basis Gλ interpolates between the Schur’s Q-functions and the functions qµ because Gλ[X; 0] =
Qλ[X] and Gλ[X; 1] = qλ[X] as is clear from (19).

Since the coefficient of zλ in Ω[(1− ε)ZnX] is qλ[X] equation (19) implies

Gλ[X; q] =
∏

1≤i<j≤n

(
1− zj/zi
1 + zj/zi

)(
1 + qzj/zi
1− qzj/zi

)
Ω[(1− ε)ZnX]

∣∣∣
zλ
.(21)

By defining G(z)P [X] = P [X − 1−q
z ]Ω[(1− ε)zX], we may show that

G(z1)G(z2) · · ·G(zn)1 =
∏

1≤i<j≤n

(
1− zj/zi
1 + zj/zi

)(
1 + qzj/zi
1− qzj/zi

)
Ω[(1− ε)ZnX].(22)

This implies that if we define the operator

GmP [X] = P

[
X − 1− q

z

]
Ω[(1− ε)zX]

∣∣∣
zm
,(23)

then
Gλ[X; q] = Gλ1 . . .G�(λ)(1).
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The operator Gm satisfies the following commutation relation.

Proposition 2. For all r, s ∈ Z we have

(1−q2)(GrGs+GsGr)+q(Gr−1Gs+1−Gs+1Gr−1+Gs−1Gr+1−Gr+1Gs−1) = 2(−1)r(1−q)2δr,−s.

For q = 0 in the equation above we recover the commutation relations of the operator Q given in
equations (14), (15) and (16).

We can use formula (23) to derive the action of this operator on the basis of Schur’s Q-functions.

Proposition 3. For m > 0,

Gm(Qλ[X]) =
∑
i≥0

qi
∑

µ:λ/µ∈Hi

2a(λ/µ)(−1)ε(m+i,µ)Qµ+(m+i)[X],(24)

where µ+(k) denotes the partition formed by adding a part of size k to the partition µ, and ε(k, µ)+1
represents which part k becomes in µ + (k). For m ≤ 0 a similar statement can be made using the
commutation relations (14), (15) and (16).

Proof From (23) the action of Gm on a function P [X] ∈ Γ can be written as

GmP [X] = P [X − (1− q)/z]Ω[(1− ε)zX]
∣∣∣
zm

=
∑
i≥0

qi(q⊥i P )[X − 1/z]Ω[(1− ε)zX]
∣∣∣
zm

=
∑
i≥0

qiQm+iq
⊥
i P [X]

where q⊥i is
Q[X + z]

∣∣∣
zi

= q⊥i Qλ[X] =
∑

µ:λ/µ∈Hi

2a(λ/µ)Qµ[X],

and thus equation (24) follows from (14) and (15). �
Example 1. We compute G(3,2,1)[X; q] using the Proposition above. We have

G(3,2,1)[X; q] = G3(G2(Q(1)[X])) = G3


∑

i≥0

∑
(1)/µ∈Hi

2a((1)/µ)(−1)ε(2+i,µ)Qµ+(2+i)[X]




= G3(Q(2,1)) + 2qG3(Q(3)) =
∑
i≥0

∑
(2,1)/µ∈Hi

2a((2,1)/µ)(−1)ε(3+i,µ)Qµ+(3+i)[X]+

+2q


∑

i≥0

∑
(3)/ν∈Hi

2a((3)/ν)(−1)ε(3+i,ν)Qν+(3+i)[X]




= (q020Q(3,2,1) + q121Q(4,2) + q221Q(5,1)) + 2q(q121Q(4,2) + q221Q(5,1) + q321Q(6))

= Q(3,2,1) + (2q + 4q2)Q(4,2) + (2q2 + 4q3)Q(5,1) + 4q4Q(6).

3.2. Properties of the polynomials Lλµ(q). The Q-Kostka polynomials introduced here have
a number of remarkable properties that are very similar to those of Kostka Foulkes polynomials
listed in the previous section. We have already seen the analog of Property 4 holds for Q-Kostka
polynomials. In what follows we will consider the other remaining properties.

An important consequence of equation (24) is a Morris-like recurrence which expresses the Q-
Kostka polynomials Lλµ(q) in terms of smaller ones.

Proposition 4. We have the following recurrence

Lα,(n,µ)(q) =
t:αt≥n∑
s=1

(−1)s−1qαs−n
∑

λ:λ/α(s)∈H(αs−n)

2a(λ/α
(s))Lλµ(q),(25)

where n > µ1 and α(s) is α with part αs removed.
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Proof If n > µ1 we have that

GnGµ[X; q] = G(n,µ)[X; q] =
∑
α

Lα,(n,µ)(q)Qα[X].(26)

On the other hand Gµ[X; q] =
∑

λ Lλµ(q)Qλ[X] and so

Gn

(∑
λ

Lλµ(q)Qλ[X]

)
=
∑
µ

Lλµ(q)Gn(Qλ[X]).

Using the action in (24) we have

GnGµ[X; q] =
∑
λ

Lλµ(q)
∑
i≥0

qi
∑

ν:λ/ν∈Hi

2a(λ/ν)(−1)ε(n+i,ν)Qν+(n+i)[X].(27)

For α = ν + (n+ i), equating the coefficients of Qα in (26) and (27) we get

Lα,(n,µ)(q) =
∑
λ

∑
i≥0

qi2a(λ/α−(n+i))(−1)ε(n+i,α−(n+i))Lλµ(q).

By reindexing i := αs − n for αs − n ≥ 0 we obtain the desired recurrence (25). �

Example 2. Let n = 5 and L(6,2),(5,2,1)(q) = 2q + 4q2. Using the recurrence we have one s such
that αs ≥ 5, i.e. α1 = 6. So

L(6,2),(5,2,1)(q) = q6−5
∑

λ/(2)∈H1

2a(λ/(2))Lλ(2,1)(q)

= q
(
2L(21),(21)(q) + 2L(3),(21)(q)

)
= q(2 + 2 · 2q) = 2q + 4q2.

As a consequence of the Morris-like recurrence we have the following

Corollary 5. Let µ ≤ λ in dominance order.
1. If n > λ1 then L(n,λ),(n,µ)(q) = Lλµ(q).
2. Lλλ(q) = 1 and L(|λ|)λ(q) = 2�(λ)−1qn(λ).
3. 2�(µ)−�(λ) divides Lλµ(q).

Proof 1. There is only one term in the recurrence (25) in this case which is exactly Lλµ(q). 2. The
first is a consequence of (1). For the second, we have that the only term on the right hand side is
q|λ|−λ12L(|λ|−λ1)(λ2,... )(q) which by induction is q|λ|−λ1+n((λ2,... ))2 · 2�(λ)−2 = 2�(λ)−1qn(λ). This is
the analog of Property 4 for the Kostka-Foulkes polynomials.

3. This property can be easily derived by induction from the recurrence. �

Using the Morris-like recurrence one can obtain a formula for the degree of Lλµ(q) similar to
Property 3 for Kostka-Foulkes.

Proposition 6. If µ ≤ λ in dominance order, we have

degqLλµ(q) = n(µ)− n(λ).

The property that is most suggestive that these polynomials are analogs of the Kostka-Foulkes
polynomials is

Conjecture 7. The Q-Kostka polynomials Lλµ(q) have non-negative coefficients.

We can prove this conjecture for some particular cases. In general we believe that there should
exist a similar combinatorial interpretation as for the Kostka-Foulkes polynomials. More precisely
there should exist a statistic function d on the set of marked shifted tableaux, similar to the charge
function on column strict tableaux, such that

Lλµ(q) =
∑
T

qd(T )
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summed over marked shifted tableaux of shifted shape λ and content µ with diagonal entries un-
marked.

In addition, we conjecture that this function must have the property that if T and S are two
marked shifted tableaux such that by erasing the marks the two resulting tableaux coincide, then
d(T ) = d(S).

For some of the polynomials Lλµ(q), this observation determines completely the statistic on the
tableaux. For instance there are two marked shifted tableaux classes of shape (5, 3) and content
(4, 3, 1) and L(5,3),(4,3,1)(q) = 2q+4q2. Clearly the tableau with a 3 in the first row must have statistic
1 and with 3 in the second row has statistic 2. On the other hand, L(6,2),(4,3,1)(q) = 4q2 +4q3. This
polynomial does not uniquely determine which of the two tableaux have statistic 2 and 3. We have
used the function G(4,3,1)[X; q] to draw a conjectured tableau poset (similar to the case of column
strict tableau) for the marked shifted tableaux with unmarked diagonals of content (4, 3, 1) in an
appendix.

We also note that monotonicity properties, similar to Property 7 and 8, hold for the Q-Kostka
polynomials.

Conjecture 8. Let L′λµ(q) := qn(µ)−n(λ)Lλµ(q−1). We have

L′λµ(q) ≥ 2�(ν)−�(µ)L′λν(q), for µ ≤ ν in dominance order.

We can prove this fact by using induction and the recurrence (25) for the case µ1 = ν1.

Example 3. Let λ = (6, 2), µ = (4, 3, 1), ν = (5, 2, 1). We have n(λ) = 2, n(µ) = 5, and n(ν) = 4.
The L′ polynomials are

L′λµ = q5−2(4/q2 + 4/q3) = 4 + 4q, L′λν = q4−2(2/q + 4/q2) = 4 + 2q,

and thus L′λµ(q) ≥ 23−3L′λν(q).

Another property of the Kostka-Foulkes polynomials case that seems to hold in our case refers
to the growth of the polynomials L. For the Kostka-Foulkes polynomials the conjecture is due to
Gupta (see [1] and references therein).

Conjecture 9. If r is an integer that is not a part in either partitions λ or µ, then

Lλ+(r),µ+(r)(q) ≥ Lλµ(q).

The case where r > λ1 (which also ensures that r > µ1) is obviously true since L(r,λ),(r,µ)(q) =
Lλµ(q) (see Corollary 5).

Example 4. Let λ = (5, 3), µ = (4, 3, 1) and r = 2. We have

L(5,3,2),(4,3,2,1)(q)− L(5,3),(4,3,1)(q) = 2q + 4q2 + 8q3 − (2q + 4q2) = 8q3.

The polynomials Lλµ(q) have a similar interpretation to property 9 using an analog of the q-
Kostant partition function. Using the formal inversion from [1], equation (12) may be written as

qλ[X] =
∏
i<j

(1−Rij

1 +Rij

)−1

Qλ[X].(28)

In fact if we let ζn :=
∏
i<j

(
1− xi/xj
1 + xi/xj

)−1

, we have that ζn =
∑

α∈Zn R(α)eα where R(α) =
∑

t at2
t

and at counts the number of ways the vector α can be written as a sum of positive roots of type
An−1, t of which are distinct. The positive roots in the root lattice of An−1 are {ei − ej}1≤i<j≤n,
where ei = (0, . . . , 1, . . . 0) is the canonical basis of Zn.
The q-analog of ζn is defined to be

ζn(q) :=
∏
i<j

(
1− qxi/xj
1 + qxi/xj

)−1

,
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and thus ζn(q) =
∑

α∈Zn Rq(α)eα where Rq(α) =
∑

t,k at,k2
tqk and at,k counts the number of ways

the vector α can be written as a sum of k positive roots, t of which are distinct.
We can express the Q-Kostka polynomials in terms of Rq(α) as

Lλµ(q) =
∑

α:Qα+µ=±2tQλ

±2tRq(α).

It is possible to express the equation above using the action of the symmetric group on Schur’s
Q-functions, yielding an alternating sum similar to Property 9. Unfortunately the action of the
symmetric group on Schur’s Q-functions indexed by a general integer vector is not as elegant as for
Schur functions (due to relation (15)).
Remark: Most of the properties of the Q-Kostka polynomials Lλµ(q) are analogous to the Kostka-
Foulkes. A few properties for the Kostka-Foulkes polynomials do not have a corresponding property
for the Q-Kostka polynomials.

1. The analog of Property 6 does not seem to hold since computations of Gλ[X; q] where q is set
to a root of unity do not factor.

2. There does not seem to exist an elegant relationship between Gλ[X; q] and its dual basis
(Property 11).

3. A property similar to that of Property 10 does not seem to hold. We do not know if there is
a relationship between Gλ[X; q] and a Hall-like algebra.

4. The symmetries of the Macdonald symmetric function in Λ cannot hold in Γ and do not suggest
what a two parameter analog of what these functions must be.

3.3. Generalized (parabolic) Q-Kostka polynomials. Shimozono and Weyman [17], defined a
generalization of the Kostka-Foulkes polynomials that are a q-analog of the Littlewood-Richardson
coefficients. They were originally defined as the coefficient of a Schur function in a symmetrized
rational series, however it became clear in later work [18] that they can be defined as coefficients in
families of symmetric functions using formulas similar to those presented here.

This construction exists in complete analogy within the Q-function algebra. We will create a fam-
ily of functions in Γ which are indexed by a sequence of strict partitions. Let µ∗ = (µ(1), µ(2), . . . , µ(k))
where µ(i) is a strict partition and set η = (�(µ(1)), �(µ(2)), . . . , �(µ(k))). Define Rootsη = {(i, j) :
1 ≤ i ≤ η1 + · · ·+ ηr < j ≤ n for some r} and then define the function

Gµ∗ [X; q] =
∏

(i,j)∈Rootsη

1 + qRij

1− qRij
Qµ̄∗ [X](29)

A generating function, vertex operator, and a Morris-like recurrence analogous to equations (21),
(23) and (25) may be derived from this definition.

If we set µ̄∗ equal to the concatenation of the partitions in µ∗, then Gµ∗ [X; 0] = Qµ̄∗ [X] and
Gµ∗ [X; 1] = Qµ(1) [X]Qµ(2) [X] · · ·Qµ(k) [X]. Define the polynomials Lλµ∗(q) by the expansion

Gµ∗ [X; q] =
∑
λ

Lλµ∗(q)Qλ[X].(30)

Computing these coefficients suggests the following remarkable conjecture and indicates that these
coefficients are an important q-analog of the structure coefficients of the Qλ[X] functions in the same
way that the parabolic Kostka coefficients are q-analogs of the Littlewood-Richardson coefficients.

Conjecture 10. For a sequence of partitions µ∗, if µ̄∗ is a partition then Lλµ∗(q) is a polynomial
in q with non-negative integer coefficients.

4. Appendix: Tables of 2�(λ)−�(µ)Lλµ(q) for n = 4, 5, 6, 7, 8, 9




(3, 1) (4)
1 q

0 1
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(3, 2) (4, 1) (5)
1 2 q q2

0 1 q

0 0 1







(3, 2, 1) (4, 2) (5, 1) (6)
1 2 q2 + q 2 q3 + q2 q4

0 1 2 q q2

0 0 1 q

0 0 0 1







(4, 2, 1) (4, 3) (5, 2) (6, 1) (7)
1 q 2 q2 + q 2 q3 + q2 q4

0 1 2 q 2 q2 q3

0 0 1 2 q q2

0 0 0 1 q

0 0 0 0 1







(4, 3, 1) (5, 2, 1) (5, 3) (6, 2) (7, 1) (8)
1 2 q 2 q2 + q 2 q2 + 2 q3 q3 + 2 q4 q5

0 1 q 2 q2 + q 2 q3 + q2 q4

0 0 1 2 q 2 q2 q3

0 0 0 1 2 q q2

0 0 0 0 1 q

0 0 0 0 0 1







(4, 3, 2) (5, 3, 1) (5, 4) (6, 2, 1) (6, 3) (7, 2) (8, 1) (9)
1 2 q + 4 q2 2 q3 + q2 2 q2 + 4 q3 q2 + 2 q4 + 4 q3 4 q4 + q3 + 2 q5 2 q6 + 2 q5 q7

0 1 q 2 q 2 q2 + q 2 q2 + 2 q3 q3 + 2 q4 q5

0 0 1 0 2 q 2 q2 2 q3 q4

0 0 0 1 q 2 q2 + q 2 q3 + q2 q4

0 0 0 0 1 2 q 2 q2 q3

0 0 0 0 0 1 2 q q2

0 0 0 0 0 0 1 q

0 0 0 0 0 0 0 1




5. Appendix: example of conjectured tableaux poset of content (4, 3, 1)

3
2 2 2

1 1 1 1

3
2 2

1 1 1 1 2∗
2 2 2

1 1 1 1 3∗
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2 2 3∗
1 1 1 1 2∗

2 2
1 1 1 1 2∗3∗

2 3∗
1 1 1 1 2∗ 2

3
1 1 1 1 2∗ 2 2

2
1 1 1 1 2∗ 2 3∗

1 1 1 1 2∗ 2 2 3∗

Figure 2. The cells marked with a k∗ can be labeled with either k or k′, we conjecture that the
statistic is independent of these markings. The value of G(4,3,1)[X; q] determines the position of each
of the shifted tableaux here except for the two of shape (6, 2). The covering relation is unknown,
but the rank function indicates that it is not the same as the charge statistic.

Acknowledgement: Thank you to Nantel Bergeron for many helpful suggestions on this research.
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