Finally, we briefly consider the parabolic version of $G_{\lambda}[X ; q]$ which are analogs of the functions introduced in $[16,17]$. The definition follows the generalization of Jing's Hall-Littlewood vertex operator to a more general class of operators, as was considered in [18]. The coefficients that appear in this generalization can be viewed as q-analogs of the structure coefficients of Schur's Q-functions.

2. Notation and Definitions

2.1. Symmetric functions, partitions, tableaux. Define the ring of symmetric functions as the polynomial ring $\Lambda=\mathbb{C}\left[p_{1}, p_{2}, p_{3}, \ldots\right]$ with $\operatorname{deg}\left(p_{k}\right)=k$. A typical monomial of degree n in this ring will be $p_{\lambda_{1}} p_{\lambda_{2}} \cdots p_{\lambda_{\ell}}:=p_{\lambda}$, where $\sum_{i} \lambda_{i}=n$ and a basis will indexed by the sequences λ such that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k} \geq 0$.

The sequence λ is a partition of n (denoted by $\lambda \vdash n$) if the entries are non-negative integers and are is weakly decreasing. The size of λ is given by $|\lambda|:=\sum_{i} \lambda_{i}=n$. The entries of λ are called the parts of the partition. The number of parts that are of size i in λ will be represented by $m_{i}(\lambda)$ and the total number of non-zero parts is represented by $\ell(\lambda)=\sum_{i} m_{i}(\lambda)$. A common statistic on partitions λ is $n(\lambda):=\sum_{i}(i-1) \lambda_{i}$.

The dominance order, $\lambda \leq \mu$ if and only if $\sum_{i=1}^{k} \lambda_{i} \leq \sum_{i=1}^{k} \mu_{i}$ for all $1 \leq k \leq \ell(\lambda)$, is a partial order on partitions. Using this partial order, the operators

$$
R_{i j} \lambda=\left(\lambda_{1}, \ldots, \lambda_{i}+1, \ldots, \lambda_{j}-1, \ldots, \lambda_{\ell(\lambda)}\right)
$$

for $1 \leq i \leq j \leq \ell(\lambda)$ have the property that $R_{i j} \lambda \geq \lambda$ if $R_{i j} \lambda$ is a partition.
We will consider three fundamental bases of Λ here. Following the notation of [14], we define the homogeneous (complete) symmetric functions are $h_{\lambda}:=h_{\lambda_{1}} h_{\lambda_{2}} \cdots h_{\lambda_{\ell(\lambda)}}$ where $h_{n}=\sum_{\lambda \vdash n} p_{\lambda} / z_{\lambda}$ and $z_{\lambda}=\prod_{i=1}^{\ell(\lambda)} i^{m_{i}(\lambda)} m_{i}(\lambda)!$. The elementary symmetric functions are $e_{\lambda}:=e_{\lambda_{1}} e_{\lambda_{2}} \cdots e_{\lambda_{\ell(\lambda)}}$ where $e_{n}=\sum_{\lambda \vdash n}(-1)^{n-\ell(\lambda)} p_{\lambda} / z_{\lambda}$. By convention we set $p_{0}=h_{0}=e_{0}=1$ and $p_{-k}=h_{-k}=e_{-k}=0$ for $k>0$. The Schur functions are given by $s_{\lambda}=\operatorname{det}\left|h_{\lambda_{i}+i-j}\right|_{1 \leq i, j \leq \ell(\lambda)}$. The sets $\left\{p_{\lambda}\right\}_{\lambda \vdash n},\left\{h_{\lambda}\right\}_{\lambda \vdash n}$, $\left\{e_{\lambda}\right\}_{\lambda \vdash n}$ and $\left\{s_{\lambda}\right\}_{\lambda \vdash n}$ all form bases for the symmetric functions of degree n.

The fundamental theorem of symmetric functions says that the subring $\mathbb{C}\left[p_{1}, p_{2}, \ldots, p_{n}\right]$ is isomorphic to the ring of symmetric polynomials $\Lambda^{X_{n}}=\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{S_{n}}$ (the polynomials in n variables which are invariant under the action $\sigma\left(x_{i}\right)=x_{\sigma(i)}$ for any $\left.\sigma \in S_{n}\right)$ using the map that sends $p_{k} \rightarrow x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k}$. The space Λ^{X} of symmetric series in an infinite number of variables $x_{1}, x_{2}, x_{3}, \ldots$ of finite degree is isomorphic to Λ under the map that sends $p_{k} \rightarrow x_{1}^{k}+x_{2}^{k}+x_{3}^{k}+\cdots$.

Much of our notation for the symmetric functions thus far has reflected that of [14], but we will concentrate on operations involving the Hopf algebra structure of the symmetric functions and specialization of variables. To this end we extend the notation for these maps in a natural manner and represent a set of variables as a sum $X=x_{1}+x_{2}+x_{3}+\ldots$ and act on this sum with elements of Λ. We define $p_{k}[X]=x_{1}^{k}+x_{2}^{k}+x_{3}^{k}+\cdots$ and for any $P \in \Lambda$ we set $P[X]$ equal to P with p_{k} replaced by $p_{k}[X]$. That is for $P=\sum_{\lambda} c_{\lambda} p_{\lambda}$,

$$
\begin{equation*}
P[X]=\sum_{\lambda} c_{\lambda} p_{\lambda_{1}}[X] p_{\lambda_{2}}[X] \cdots p_{\lambda_{\ell(\lambda)}}[X] \tag{1}
\end{equation*}
$$

It is clearly true for two sets of variables X and $Y=y_{1}+y_{2}+y_{3}+\cdots$ that $p_{k}[X+Y]=p_{k}[X]+p_{k}[Y]$ and to extend this linearly we set $p_{k}[X-Y]=p_{k}[X]-p_{k}[Y]$ and $p_{k}[X Y]=p_{k}[X] p_{k}[Y]$. We will also consider the Cauchy element

$$
\begin{equation*}
\Omega=\sum_{n \geq 0} \sum_{\lambda \vdash n} p_{\lambda} / z_{\lambda}=\sum_{n \geq 0} h_{n} \tag{2}
\end{equation*}
$$

in the completion of Λ. This special element has the property that $\Omega[X+Y]=\Omega[X] \Omega[Y], \Omega[X-Y]=$ $\Omega[X] / \Omega[Y]$ and $\Omega[X]=\prod_{i}\left(1-x_{i}\right)^{-1}$.

Notice that for an arbitrary element $c \in \mathbb{C}$, we have $p_{k}[c X]=c p_{k}[X]$. This implies that $c X$ does not represent $c x_{1}+c x_{2}+c x_{3}+\cdots$, instead it represents c 'copies of' the variables X. We introduce a special parameter q or t that interacts with the variable set in that $p_{k}[q X]=q^{k} p_{k}[X]$. Sometimes
this element will be an arbitrary parameter and other times we will specialize it to values in the base field \mathbb{C}. To obtain operations such as replacing x_{i} by $c x_{i}$ in a symmetric function we use our special parameter q and at the end of our calculations we specialize this parameter to c. In particular, the operation of replacing x_{i} by $-x_{i}$ is useful and we will represent it with the notation

$$
\begin{equation*}
P[\epsilon X]=\left.P[q X]\right|_{q=-1} \tag{3}
\end{equation*}
$$

We also have the relations $p_{k}[\epsilon X]=(-1)^{k} p_{k}[X], \Omega[\epsilon X]=\prod_{i}\left(1+x_{i}\right)^{-1}$ and $h_{n}[X]=e_{n}[-\epsilon X]$. Of course if the symmetric function P or the set of variables X already has a parameter q, the one that is set to -1 is unique and does not interfere with parameters in P or X.

It follows from the definition of the Schur function and the expansion of the Vandermonde determinant $\operatorname{det}\left|x_{i}^{j-1}\right|_{1 \leq i, j \leq n}=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)$ that $s_{\lambda}[X]=\prod_{1 \leq i<j \leq n}\left(1-R_{i j}\right) h_{\lambda}[X]$, where $R_{i j} h_{\lambda}[X]=h_{R_{i j} \lambda}[X]$. Since the coefficient of z^{λ} in $\Omega\left[Z_{n} X\right]$ is $h_{\lambda}[X]$ and $\left(z_{j} / z_{i}\right)^{-1} z_{\lambda}=z^{R_{i j} \lambda}$, then the Schur function is equal to

$$
\begin{equation*}
s_{\lambda}[X]=\left.\Omega\left[Z_{n} X\right] \prod_{1 \leq i<j \leq n}\left(1-z_{j} / z_{i}\right)\right|_{z^{\lambda}} \tag{4}
\end{equation*}
$$

Remark: We follow [14] in the use of $R_{i j}$ acing on symmetric functions, however one should note that these operators are not associative. This issue can be resolved however and is dealt with in more detail in [1] or [8].

Now for any symmetric function $P \in \Lambda$ define $\mathbf{S}(z) P[X]:=P\left[X-\frac{1}{z}\right] \Omega[z X]$. Since we have that $\mathbf{S}\left(z_{1}\right) \mathbf{S}\left(z_{2}\right) \cdots \mathbf{S}\left(z_{n}\right) 1=\Omega\left[Z_{n} X\right] \prod_{1 \leq i<j \leq n}\left(1-z_{j} / z_{i}\right)$, then the operator $\mathbf{S}_{m} P[X]=\left.\mathbf{S}(z) P[X]\right|_{z^{m}}$ raises the degree of a symmetric function by m and has the property that $\mathbf{S}_{m}\left(s_{\lambda}[X]\right)=s_{(m, \lambda)}[X]$ as long as $m \geq \lambda_{1}$. The \mathbf{S}_{m} operators also have the commutation relations $\mathbf{S}_{m} \mathbf{S}_{m+1}=0$ and $\mathbf{S}_{m} \mathbf{S}_{n}=-\mathbf{S}_{n-1} \mathbf{S}_{m+1}$.

A Young diagram for a partition will be a collection of cells of the integer grid lying in the first quadrant. For a partition $\lambda, Y(\lambda)=\left\{(i, j): 0 \leq j<\ell(\lambda)\right.$ and $\left.0 \leq i \leq \lambda_{j}\right\}$. The reason why we consider empty cells rather than say points is because we wish to consider fillings of these cells. A tableau is a map from the set $Y(\lambda)$ to \mathbb{N}, this may be represented on a Young diagram by writing integers within the cells of a graphical representation of a Young diagram (see figure 1). The shape of the tableau is the partition λ. We say that a tableau T is column strict if $T(i, j) \leq T(i+1, j)$ and $T(i, j)<T(i, j+1)$ whenever the points $(i+1, j)$ or $(i, j+1)$ are in $Y(\lambda)$. Let $m_{k}(T)$ represent the number of points p in $Y(\lambda)$ such that $T(p)=k$. The vector $\left(m_{1}(T), m_{2}(T), \ldots\right)$ is the content of the tableau T.

The Pieri rule describes a combinatorial method for computing the product of $h_{m}[X]$ and $s_{\mu}[X]$ expanded in the Schur basis. We will use the notation $\lambda / \mu \in \mathcal{H}_{m}$ to represent that $|\lambda|-|\mu|=m$ and for $1 \leq i \leq \ell(\lambda), \mu_{i} \leq \lambda_{i}$ and $\mu_{i} \geq \lambda_{i+1}$. It may be easily shown that

$$
\begin{equation*}
h_{m}[X] s_{\mu}[X]=\sum_{\lambda / \mu \in \mathcal{H}_{m}} s_{\lambda}[X] \tag{5}
\end{equation*}
$$

This gives a method for computing the expansion of the $h_{\mu}[X]$ basis in terms of the Schur functions. Consider the coefficients $K_{\lambda \mu}$ defined by the expression

$$
\begin{equation*}
h_{\mu}[X]=\sum_{\lambda \vdash|\mu|} K_{\lambda \mu} s_{\lambda}[X] \tag{6}
\end{equation*}
$$

$K_{\lambda \mu}$ are called the Kostka numbers and are equal to the number of column strict tableaux of shape λ and content μ. Now define a q analog of the $\left\{h_{\lambda}\right\}$ basis by setting

$$
\begin{equation*}
H_{\lambda}[X ; q]=\prod_{i<j} \frac{1-R_{i j}}{1-q R_{i j}} h_{\lambda}[X]=\prod_{i<j}\left(1+(q-1) R_{i j}+\left(q^{2}-q\right) R_{i j}^{2}+\cdots\right) h_{\lambda}[X] \tag{7}
\end{equation*}
$$

Since the coefficient of z^{λ} in $\Omega\left[Z_{k} X\right]$ is $h_{\lambda}[X]$, it is clear that we have the formula

$$
\begin{equation*}
H_{\lambda}[X ; q]=\left.\Omega\left[Z_{k} X\right] \prod_{1 \leq i<j \leq k} \frac{1-z_{j} / z_{i}}{1-q z_{j} / z_{i}}\right|_{z^{\lambda}} \tag{8}
\end{equation*}
$$

This leads us to a 'vertex operator' definition for these functions. If we define the operation $\mathbf{H}(z) P[X]=P\left[X-\frac{1-q}{z}\right] \Omega[z X]$, then

$$
\begin{equation*}
\mathbf{H}\left(z_{1}\right) \mathbf{H}\left(z_{2}\right) \cdots \mathbf{H}\left(z_{k}\right) 1=\Omega\left[Z_{k} X\right] \prod_{1 \leq i<j \leq k} \frac{1-z_{j} / z_{i}}{1-q z_{j} / z_{i}} \tag{9}
\end{equation*}
$$

and therefore defining the operator \mathbf{H}_{m} that raises the degree of a symmetric function by m as $\mathbf{H}_{m} P[X]:=\left.\mathbf{H}(z) P[X]\right|_{z^{m}}$, has the property that $\mathbf{H}_{m} H_{\lambda}[X ; q]=H_{(m, \lambda)}[X ; q]$ as long as $m \geq \lambda_{1}$. The vertex operator also satisfies the relations $\mathbf{H}_{m-1} \mathbf{H}_{m}=q \mathbf{H}_{m} \mathbf{H}_{m-1}$ and $\mathbf{H}_{m-1} \mathbf{H}_{n}-q \mathbf{H}_{m} \mathbf{H}_{n-1}=$ $q \mathbf{H}_{n} \mathbf{H}_{m-1}-\mathbf{H}_{n-1} \mathbf{H}_{m}$.

The functions $H_{\lambda}[X ; q]$ interpolate between the functions $s_{\lambda}[X]=H_{\lambda}[X ; 0]$ and $h_{\lambda}[X]=H_{\lambda}[X ; 1]$. The Kostka-Foulkes polynomials are defined as the q-polynomial coefficient of $s_{\lambda}[X]$ in $H_{\mu}[X ; q]$ and hence we have the expansion analogous to (6).

$$
\begin{equation*}
H_{\mu}[X ; q]=\sum_{\lambda \vdash|\mu|} K_{\lambda \mu}(q) s_{\lambda}[X] \tag{10}
\end{equation*}
$$

The coefficients $K_{\lambda \mu}(q)$ are clearly polynomials in q, but it is surprising to find that the coefficients of the polynomials are non-negative integers. A defining recurrence can be derived $K_{\lambda \mu}(q)$ in terms of the Kostka-Foulkes polynomials indexed by partitions of size $|\mu|-\mu_{1}$ using the formula for \mathbf{H}_{m}. This recurrence is often referred to as the 'Morris recurrence' for the Kostka-Foulkes polynomials.

The Kostka-Foulkes polynomials and the generating functions $H_{\mu}[X ; q]$ have the following important properties which we simply list here so that we may draw a connection to analogous formulae. For a more detailed reference of these sorts of properties we refer the interested reader to the excellent survey article [1].

1. $K_{\lambda \mu}(q)$ has non-negative integer coefficients.
2. $K_{\lambda \mu}(q)=\sum_{T} q^{c(T)}$, where the sum is over all column strict tableaux of shape λ and content μ and $c(T)$ denotes the charge of a tableau T (see [12]). In addition there is a combinatorial interpretation for these coefficients in terms of objects called rigged configurations (see [10]).
3. The degree in q of $K_{\lambda \mu}(q)$ is $n(\mu)-n(\lambda)$.
4. $K_{\lambda \mu}(0)=\delta_{\lambda \mu}$ which implies $H_{\mu}[X ; 0]=s_{\mu}[X], K_{\lambda \mu}(1)=K_{\lambda \mu}$, so that $H_{\mu}[X ; 1]=h_{\mu}[X]$, $K_{\lambda \lambda}(q)=1$ and $K_{(|\mu|) \mu}(q)=q^{n(\mu)}$. We also have that $K_{\lambda \mu}(q)=0$ if $\lambda<\mu$.
5. $H_{\left(1^{n}\right)}[X ; q]=e_{n}\left[\frac{X}{1-q}\right](q ; q)_{n}$ where $(q ; q)_{n}=\prod_{i=1}^{n}\left(1-q^{i}\right)$.
6. If ζ is $k^{t h}$ root of unity, $H_{\mu}[X ; \zeta]$ factors into a product of symmetric functions.
7. Set $K_{\mu \lambda}^{\prime}(q):=q^{n(\lambda)-n(\mu)} K_{\mu \lambda}(1 / q)$, then $K_{\mu \lambda}^{\prime}(q) \geq K_{\mu \nu}^{\prime}(q)$ for $\lambda \leq \nu$.
8. $K_{\lambda+(a), \mu+(a)}(q) \geq K_{\lambda, \mu}(q)$, where $\lambda+(a)$ represents the partition λ with a part of size a inserted into it.
9. $K_{\lambda \mu}(q)=\sum_{w \in S_{n}} \operatorname{sign}(w) \mathcal{P}_{q}(w(\lambda+\rho)-(\mu+\rho))$ where $\mathcal{P}_{q}(\alpha)$ is the coefficient of x^{α} in $\prod_{1 \leq i<j \leq n}\left(1-q x_{i} / x_{j}\right)^{-1}$, a q analog of the Kostant partition function and $\rho=(\ell(\mu)-1, \ell(\mu)-$ $2, \ldots, 1,0)$.
10. $H_{\mu}[X ; q] H_{\lambda}[X ; q]=\sum_{\gamma} d_{\lambda \mu}^{\nu}(q) H_{\nu}[X ; q]$, for some coefficients $d_{\lambda \mu}^{\nu}(q)$ with the property that if the Littlewood-Richardson coefficient $c_{\lambda \mu}^{\nu}=0$ then $d_{\lambda \mu}^{\nu}(q)=0$. These coefficients are a transformation of the Hall algebra structure coefficients.
11. For the scalar product $\left\langle s_{\lambda}[X], s_{\mu}[X]\right\rangle=\delta_{\lambda \mu}$, we have that $\left\langle H_{\lambda}[X ; q], H_{\mu}[X(1-q) ; q]\right\rangle=0$ if $\lambda \neq \mu$.
2.2. Schur's Q-functions, strict partitions, and marked shifted tableaux. The Q-function algebra is a sub-algebra of the symmetric functions $\Gamma=\mathbb{C}\left[p_{1}, p_{3}, p_{5}, \ldots\right]$. A typical monomial in this algebra will be p_{λ}, where λ is a partition and λ_{i} is odd. A partition λ is strict if $\lambda_{i}>\lambda_{i+1}$ for all $1 \leq i \leq \ell(\lambda)-1$ and a partition λ is odd if λ_{i} is odd for $1 \leq i \leq \ell(\lambda)$. We will use the notation $\lambda \vdash_{s} \bar{n}$ (respectively $\lambda \vdash_{o} n$) to denote that λ is a partition of size n that is strict (respectively odd). Note that the number of strict partitions of size n and the number of odd partitions of size n is the same (proof: write out a generating function for each sequence).

Figure 1. The diagram on the left represents a column strict tableau of shape $(6,5,3,3)$ and content $(4,3,3,2,2,2,1)$. The diagram on the right represents a shifted marked tableau of shape $(7,5,4,1)$ and content $(2,5,5,3,2)$. This tableau has labels which are marked on the diagonal.

The analog of the homogeneous and elementary symmetric functions in Γ are the functions $q_{\lambda}:=q_{\lambda_{1}} q_{\lambda_{2}} \cdots q_{\lambda_{\ell(\lambda)}}$, where $q_{n}=\sum_{\lambda \vdash{ }_{o} n} 2^{\ell(\lambda)} p_{\lambda} / z_{\lambda}$. Define an algebra morphism $\theta: \Lambda \rightarrow \Gamma$ by the action on the p_{n} generators as $\theta\left(p_{n}\right)=\left(1-(-1)^{n}\right) p_{n}$. That is $\theta\left(p_{n}\right)=2 p_{n}$ if n is odd and $\theta\left(p_{n}\right)=0$ for n even. θ has the property that $\theta\left(h_{n}\right)=\theta\left(e_{n}\right)=q_{n}$ and may be represented in our notation as $\theta\left(p_{n}[X]\right)=p_{n}[(1-\epsilon) X]$. Under this morphism, our Cauchy element may also be considered a generating function for the q_{n} elements since

$$
\begin{equation*}
\Omega[(1-\epsilon) X]=\sum_{n \geq 0} q_{n}[X]=\prod_{i} \frac{1+x_{i}}{1-x_{i}} \tag{11}
\end{equation*}
$$

It follows that $\left\{p_{\lambda}\right\}_{\lambda \vdash_{o} n},\left\{q_{\lambda}\right\}_{\lambda \vdash^{\circ} n},\left\{q_{\lambda}\right\}_{\lambda \vdash_{s} n}$ are all bases for the subspace of Q-functions of degree n. Another fundamental basis for this space are the Schur's Q-functions $Q_{\lambda}[X]=\theta\left(H_{\lambda}[X ;-1]\right)$. These functions hold a similar place in the Q-function algebra that the Schur functions hold in Λ. In particular, $\left\{Q_{\lambda}[X]\right\}_{\lambda \vdash_{s} n}$ is a basis for the Q-functions of degree n.

In analogy with the Schur functions, $Q_{\lambda}[X]$ may also be defined with a raising operator formula by setting $q=-1$ and applying the θ homomorphism to equation (7). We arrive at the formula:

$$
\begin{equation*}
Q_{\lambda}[X]=\prod_{i<j} \frac{1-R_{i j}}{1+R_{i j}} q_{\lambda}[X]=\prod_{i<j}\left(1-2 R_{i j}+2 R_{i j}^{2}-\cdots\right) q_{\lambda}[X] \tag{12}
\end{equation*}
$$

where the operators now act as $R_{i j} q_{\lambda}[X]=q_{R_{i j} \lambda}[X]$. Furthermore, they have a formula as the coefficient in a generating function:

$$
\begin{equation*}
Q_{\lambda}[X]=\left.\Omega\left[(1-\epsilon) Z_{n} X\right] \prod_{1 \leq i<j \leq n} \frac{1-z_{j} / z_{i}}{1+z_{j} / z_{i}}\right|_{z^{\lambda}} \tag{13}
\end{equation*}
$$

As with Schur functions and the Hall-Littlewood functions, the raising operator formula leads us to a vertex operator definition. By setting $\mathbf{Q}(z) P[X]=P\left[X-\frac{1}{z}\right] \Omega[(1-\epsilon) z X]$, it is easily shown that $\mathbf{Q}\left(z_{1}\right) \mathbf{Q}\left(z_{2}\right) \cdots \mathbf{Q}\left(z_{n}\right) 1=\Omega\left[(1-\epsilon) Z_{n} X\right] \prod_{1 \leq i<j \leq n} \frac{1-z_{j} / z_{i}}{1+z_{j} / z_{i}}$, and hence if we set $\mathbf{Q}_{m} P[X]=$ $\left.\mathbf{Q}(z) P[X]\right|_{z^{m}}$ then $\mathbf{Q}_{m}\left(Q_{\lambda}[X]\right)=Q_{(m, \lambda)}[X]$ as long as $m>\lambda_{1}$. The commutation relations for the \mathbf{Q}_{m} are

$$
\begin{gather*}
\mathbf{Q}_{m} \mathbf{Q}_{n}=-\mathbf{Q}_{n} \mathbf{Q}_{m} \text { for } m \neq-n \tag{14}\\
\mathbf{Q}_{m} \mathbf{Q}_{-m}=2(-1)^{m}-\mathbf{Q}_{-m} \mathbf{Q}_{m} \text { if } m \neq 0 \tag{15}\\
\mathbf{Q}_{m}^{2}=0 \text { if } m \neq 0 \text { and } \mathbf{Q}_{0}^{2}=1 \tag{16}
\end{gather*}
$$

These formulas allow us to straighten the $Q_{\mu}[X]$ functions when they are not indexed by a strict partition.

A shifted Young diagram for a partition will again be a collection of cells lying in the first quadrant. For a strict partition λ, let $Y S(\lambda)=\left\{(i, j): 0 \leq j \leq \ell(\lambda)\right.$ and $\left.j-1 \leq i \leq \lambda_{j}+j-1\right\}$. A marked shifted tableau T of shape λ is a map from $Y S(\lambda)$ to the set of marked integers $\left\{1^{\prime}<1<\right.$ $\left.2^{\prime}<2<\ldots\right\}$ that satisfy the following conditions

- $T(i, j) \leq T(i+1, j)$ and $T(i, j) \leq T(i, j+1)$
- If $T(i, j)=k$ for some integer k (i.e. has an unmarked label) then $T(i, j+1) \neq k$
- If $T(i, j)=k^{\prime}$ for some marked label k^{\prime} then $T(i+1, j) \neq k^{\prime}$.

We may represent these objects graphically with a diagram representing λ and the cells filled with the marked integer alphabet. If T is a marked shifted tableau, then we will set $m_{i}(T)$ as the number of occurrences of i and i^{\prime} in T. The sequence $\left(m_{1}(T), m_{2}(T), m_{3}(T), \ldots\right)$ is the content of T.

The combinatorial definition of the marked shifted tableaux is defined so that it reflects the change of basis coefficients between the q_{λ} and Q_{μ} basis. The rule for computing the product of $q_{m}[X]$ and $Q_{\mu}[X]$ when expanded in the Schur Q-functions is the analog of the Pieri rule for the Γ space. If $\lambda / \mu \in \mathcal{H}_{m}$ then $a(\lambda / \mu)$ will represent $1+$ the number of $1<j \leq \ell(\lambda)$ such that $\lambda_{j}>\mu_{j}$ and $\mu_{j-1}>\lambda_{j}$. We may show that

$$
\begin{equation*}
q_{m}[X] Q_{\mu}[X]=\sum_{\lambda / \mu \in \mathcal{H}_{m}} 2^{a(\lambda / \mu)-\ell(\lambda)+\ell(\mu)} Q_{\lambda}[X] \tag{17}
\end{equation*}
$$

Denote by $L_{\lambda \mu}$ the number of marked shifted tableaux T of shape λ and content μ (where λ is a strict partition) such that $T(i, i)$ is not a marked integer. We may expand the function $q_{\mu}[X]$ in terms of the Q-functions using (17) to show

$$
\begin{equation*}
q_{\mu}[X]=\sum_{\lambda \vdash|\mu|} L_{\lambda \mu} Q_{\lambda}[X] \tag{18}
\end{equation*}
$$

3. The Q-Hall-Littlewood basis $G_{\lambda}(x ; q)$ For the algebra Γ

Note: From here, unless otherwise stated, all partitions are considered strict.
3.1. Raising operator formula. We define the following analog of the Hall-Littlewood functions in the subalgebra Γ

$$
\begin{equation*}
G_{\lambda}[X ; q]:=\prod_{1 \leq i<j \leq n}\left(\frac{1+q R_{i j}}{1-q R_{i j}}\right)\left(\frac{1-R_{i j}}{1+R_{i j}}\right) q_{\lambda}[X]=\prod_{1 \leq i<j \leq n}\left(\frac{1+q R_{i j}}{1-q R_{i j}}\right) Q_{\lambda}[X] \tag{19}
\end{equation*}
$$

We call the functions $G_{\lambda} \in \Gamma \otimes_{\mathbb{C}} \mathbb{C}(q)$ the Q-Hall-Littlewood functions.
In $\Gamma \otimes \mathbb{C}(q)$ this family can be expressed in the basis of Q-functions as

$$
\begin{equation*}
G_{\mu}[X ; q]=\sum_{\lambda} L_{\lambda \mu}(q) Q_{\lambda}[X] \tag{20}
\end{equation*}
$$

which can be viewed as a q-analog of (18). We call the coefficients $L_{\lambda \mu}(q)$ the Q-Kostka polynomials. We shall see that this family of polynomials shares many of the same properties with the classical Kostka-Foulkes polynomials. Tables of these coefficients are given in an Appendix. It follows from (19) that $L_{\lambda \mu}(q)$ have integer coefficients and $L_{\lambda \mu}(q)=0$ if $\lambda<\mu$. This shows
Proposition 1. The G_{λ}, λ strict, form a \mathbb{Z}-basis for $\Gamma \otimes_{\mathbb{Z}} \mathbb{Z}(q)$.
The basis G_{λ} interpolates between the Schur's Q-functions and the functions q_{μ} because $G_{\lambda}[X ; 0]=$ $Q_{\lambda}[X]$ and $G_{\lambda}[X ; 1]=q_{\lambda}[X]$ as is clear from (19).

Since the coefficient of z^{λ} in $\Omega\left[(1-\epsilon) Z_{n} X\right]$ is $q_{\lambda}[X]$ equation (19) implies

$$
\begin{equation*}
G_{\lambda}[X ; q]=\left.\prod_{1 \leq i<j \leq n}\left(\frac{1-z_{j} / z_{i}}{1+z_{j} / z_{i}}\right)\left(\frac{1+q z_{j} / z_{i}}{1-q z_{j} / z_{i}}\right) \Omega\left[(1-\epsilon) Z_{n} X\right]\right|_{z^{\lambda}} \tag{21}
\end{equation*}
$$

By defining $\mathbf{G}(z) P[X]=P\left[X-\frac{1-q}{z}\right] \Omega[(1-\epsilon) z X]$, we may show that

$$
\begin{equation*}
\mathbf{G}\left(z_{1}\right) \mathbf{G}\left(z_{2}\right) \cdots \mathbf{G}\left(z_{n}\right) 1=\prod_{1 \leq i<j \leq n}\left(\frac{1-z_{j} / z_{i}}{1+z_{j} / z_{i}}\right)\left(\frac{1+q z_{j} / z_{i}}{1-q z_{j} / z_{i}}\right) \Omega\left[(1-\epsilon) Z_{n} X\right] . \tag{22}
\end{equation*}
$$

This implies that if we define the operator

$$
\begin{equation*}
\mathbf{G}_{m} P[X]=\left.P\left[X-\frac{1-q}{z}\right] \Omega[(1-\epsilon) z X]\right|_{z^{m}} \tag{23}
\end{equation*}
$$

then

$$
G_{\lambda}[X ; q]=\mathbf{G}_{\lambda_{1}} \ldots \mathbf{G}_{\ell(\lambda)}(1)
$$

The operator \mathbf{G}_{m} satisfies the following commutation relation.
Proposition 2. For all $r, s \in \mathbb{Z}$ we have
$\left(1-q^{2}\right)\left(\mathbf{G}_{r} \mathbf{G}_{s}+\mathbf{G}_{s} \mathbf{G}_{r}\right)+q\left(\mathbf{G}_{r-1} \mathbf{G}_{s+1}-\mathbf{G}_{s+1} \mathbf{G}_{r-1}+\mathbf{G}_{s-1} \mathbf{G}_{r+1}-\mathbf{G}_{r+1} \mathbf{G}_{s-1}\right)=2(-1)^{r}(1-q)^{2} \delta_{r,-s}$.
For $q=0$ in the equation above we recover the commutation relations of the operator \mathbf{Q} given in equations (14), (15) and (16).

We can use formula (23) to derive the action of this operator on the basis of Schur's Q-functions.
Proposition 3. For $m>0$,

$$
\begin{equation*}
\mathbf{G}_{m}\left(Q_{\lambda}[X]\right)=\sum_{i \geq 0} q^{i} \sum_{\mu: \lambda / \mu \in \mathcal{H}_{i}} 2^{a(\lambda / \mu)}(-1)^{\epsilon(m+i, \mu)} Q_{\mu+(m+i)}[X], \tag{24}
\end{equation*}
$$

where $\mu+(k)$ denotes the partition formed by adding a part of size k to the partition μ, and $\epsilon(k, \mu)+1$ represents which part k becomes in $\mu+(k)$. For $m \leq 0$ a similar statement can be made using the commutation relations (14), (15) and (16).
Proof From (23) the action of \mathbf{G}_{m} on a function $P[X] \in \Gamma$ can be written as

$$
\begin{aligned}
\mathbf{G}_{m} P[X] & =\left.P[X-(1-q) / z] \Omega[(1-\epsilon) z X]\right|_{z^{m}} \\
& =\left.\sum_{i \geq 0} q^{i}\left(q_{i}^{\perp} P\right)[X-1 / z] \Omega[(1-\epsilon) z X]\right|_{z^{m}} \\
& =\sum_{i \geq 0} q^{i} \mathbf{Q}_{m+i} q_{i}^{\perp} P[X]
\end{aligned}
$$

where q_{i}^{\perp} is

$$
\left.\mathbf{Q}[X+z]\right|_{z^{i}}=q_{i}^{\perp} Q_{\lambda}[X]=\sum_{\mu: \lambda / \mu \in \mathcal{H}_{i}} 2^{a(\lambda / \mu)} Q_{\mu}[X],
$$

and thus equation (24) follows from (14) and (15).
Example 1. We compute $G_{(3,2,1)}[X ; q]$ using the Proposition above. We have

$$
\begin{gathered}
G_{(3,2,1)}[X ; q]=\mathbf{G}_{3}\left(\mathbf{G}_{2}\left(Q_{(1)}[X]\right)\right)=\mathbf{G}_{3}\left(\sum_{i \geq 0} \sum_{(1) / \mu \in \mathcal{H}_{i}} 2^{a((1) / \mu)}(-1)^{\epsilon(2+i, \mu)} Q_{\mu+(2+i)}[X]\right) \\
=\mathbf{G}_{3}\left(Q_{(2,1)}\right)+2 q \mathbf{G}_{3}\left(Q_{(3)}\right)=\sum_{i \geq 0} \sum_{(2,1) / \mu \in \mathcal{H}_{i}} 2^{a((2,1) / \mu)}(-1)^{\epsilon(3+i, \mu)} Q_{\mu+(3+i)}[X]+ \\
+2 q\left(\sum_{i \geq 0} \sum_{(3) / \nu \in \mathcal{H}_{i}} 2^{a((3) / \nu)}(-1)^{\epsilon(3+i, \nu)} Q_{\nu+(3+i)}[X]\right) \\
=\left(q^{0} 2^{0} Q_{(3,2,1)}+q^{1} 2^{1} Q_{(4,2)}+q^{2} 2^{1} Q_{(5,1)}\right)+2 q\left(q^{1} 2^{1} Q_{(4,2)}+q^{2} 2^{1} Q_{(5,1)}+q^{3} 2^{1} Q_{(6)}\right) \\
=Q_{(3,2,1)}+\left(2 q+4 q^{2}\right) Q_{(4,2)}+\left(2 q^{2}+4 q^{3}\right) Q_{(5,1)}+4 q^{4} Q_{(6)} .
\end{gathered}
$$

3.2. Properties of the polynomials $L_{\lambda \mu}(q)$. The Q-Kostka polynomials introduced here have a number of remarkable properties that are very similar to those of Kostka Foulkes polynomials listed in the previous section. We have already seen the analog of Property 4 holds for Q-Kostka polynomials. In what follows we will consider the other remaining properties.

An important consequence of equation (24) is a Morris-like recurrence which expresses the QKostka polynomials $L_{\lambda \mu}(q)$ in terms of smaller ones.
Proposition 4. We have the following recurrence

$$
\begin{equation*}
L_{\alpha,(n, \mu)}(q)=\sum_{s=1}^{t: \alpha_{t} \geq n}(-1)^{s-1} q^{\alpha_{s}-n} \sum_{\lambda: \lambda / \alpha^{(s)} \in \mathcal{H}_{\left(\alpha_{s}-n\right)}} 2^{a\left(\lambda / \alpha^{(s)}\right)} L_{\lambda \mu}(q), \tag{25}
\end{equation*}
$$

where $n>\mu_{1}$ and $\alpha^{(s)}$ is α with part α_{s} removed.

Proof If $n>\mu_{1}$ we have that

$$
\begin{equation*}
\mathbf{G}_{n} G_{\mu}[X ; q]=G_{(n, \mu)}[X ; q]=\sum_{\alpha} L_{\alpha,(n, \mu)}(q) Q_{\alpha}[X] \tag{26}
\end{equation*}
$$

On the other hand $G_{\mu}[X ; q]=\sum_{\lambda} L_{\lambda \mu}(q) Q_{\lambda}[X]$ and so

$$
\mathbf{G}_{n}\left(\sum_{\lambda} L_{\lambda \mu}(q) Q_{\lambda}[X]\right)=\sum_{\mu} L_{\lambda \mu}(q) \mathbf{G}_{n}\left(Q_{\lambda}[X]\right)
$$

Using the action in (24) we have

$$
\begin{equation*}
\mathbf{G}_{n} G_{\mu}[X ; q]=\sum_{\lambda} L_{\lambda \mu}(q) \sum_{i \geq 0} q^{i} \sum_{\nu: \lambda / \nu \in \mathcal{H}_{i}} 2^{a(\lambda / \nu)}(-1)^{\epsilon(n+i, \nu)} Q_{\nu+(n+i)}[X] . \tag{27}
\end{equation*}
$$

For $\alpha=\nu+(n+i)$, equating the coefficients of Q_{α} in (26) and (27) we get

$$
L_{\alpha,(n, \mu)}(q)=\sum_{\lambda} \sum_{i \geq 0} q^{i} 2^{a(\lambda / \alpha-(n+i))}(-1)^{\epsilon(n+i, \alpha-(n+i))} L_{\lambda \mu}(q)
$$

By reindexing $i:=\alpha_{s}-n$ for $\alpha_{s}-n \geq 0$ we obtain the desired recurrence (25).
Example 2. Let $n=5$ and $L_{(6,2),(5,2,1)}(q)=2 q+4 q^{2}$. Using the recurrence we have one such that $\alpha_{s} \geq 5$, i.e. $\alpha_{1}=6$. So

$$
\begin{gathered}
L_{(6,2),(5,2,1)}(q)=q^{6-5} \sum_{\lambda /(2) \in \mathcal{H}_{1}} 2^{a(\lambda /(2))} L_{\lambda(2,1)}(q) \\
=q\left(2 L_{(21),(21)}(q)+2 L_{(3),(21)}(q)\right)=q(2+2 \cdot 2 q)=2 q+4 q^{2} .
\end{gathered}
$$

As a consequence of the Morris-like recurrence we have the following
Corollary 5. Let $\mu \leq \lambda$ in dominance order.

1. If $n>\lambda_{1}$ then $L_{(n, \lambda),(n, \mu)}(q)=L_{\lambda \mu}(q)$.
2. $L_{\lambda \lambda}(q)=1$ and $L_{(|\lambda|) \lambda}(q)=2^{\ell(\lambda)-1} q^{n(\lambda)}$.
3. $2^{\ell(\mu)-\ell(\lambda)}$ divides $L_{\lambda \mu}(q)$.

Proof 1. There is only one term in the recurrence (25) in this case which is exactly $L_{\lambda \mu}(q)$. 2. The first is a consequence of (1). For the second, we have that the only term on the right hand side is $q^{|\lambda|-\lambda_{1}} 2 L_{\left(|\lambda|-\lambda_{1}\right)\left(\lambda_{2}, \ldots\right)}(q)$ which by induction is $q^{|\lambda|-\lambda_{1}+n\left(\left(\lambda_{2}, \ldots\right)\right)} 2 \cdot 2^{\ell(\lambda)-2}=2^{\ell(\lambda)-1} q^{n(\lambda)}$. This is the analog of Property 4 for the Kostka-Foulkes polynomials.
3. This property can be easily derived by induction from the recurrence.

Using the Morris-like recurrence one can obtain a formula for the degree of $L_{\lambda \mu}(q)$ similar to Property 3 for Kostka-Foulkes.

Proposition 6. If $\mu \leq \lambda$ in dominance order, we have

$$
\operatorname{deg}_{q} L_{\lambda \mu}(q)=n(\mu)-n(\lambda)
$$

The property that is most suggestive that these polynomials are analogs of the Kostka-Foulkes polynomials is

Conjecture 7. The Q-Kostka polynomials $L_{\lambda \mu}(q)$ have non-negative coefficients.
We can prove this conjecture for some particular cases. In general we believe that there should exist a similar combinatorial interpretation as for the Kostka-Foulkes polynomials. More precisely there should exist a statistic function d on the set of marked shifted tableaux, similar to the charge function on column strict tableaux, such that

$$
L_{\lambda \mu}(q)=\sum_{T} q^{d(T)}
$$

summed over marked shifted tableaux of shifted shape λ and content μ with diagonal entries unmarked.

In addition, we conjecture that this function must have the property that if T and S are two marked shifted tableaux such that by erasing the marks the two resulting tableaux coincide, then $d(T)=d(S)$.

For some of the polynomials $L_{\lambda \mu}(q)$, this observation determines completely the statistic on the tableaux. For instance there are two marked shifted tableaux classes of shape $(5,3)$ and content $(4,3,1)$ and $L_{(5,3),(4,3,1)}(q)=2 q+4 q^{2}$. Clearly the tableau with a 3 in the first row must have statistic 1 and with 3 in the second row has statistic 2 . On the other hand, $L_{(6,2),(4,3,1)}(q)=4 q^{2}+4 q^{3}$. This polynomial does not uniquely determine which of the two tableaux have statistic 2 and 3 . We have used the function $G_{(4,3,1)}[X ; q]$ to draw a conjectured tableau poset (similar to the case of column strict tableau) for the marked shifted tableaux with unmarked diagonals of content $(4,3,1)$ in an appendix.

We also note that monotonicity properties, similar to Property 7 and 8 , hold for the Q-Kostka polynomials.

Conjecture 8. Let $L_{\lambda \mu}^{\prime}(q):=q^{n(\mu)-n(\lambda)} L_{\lambda \mu}\left(q^{-1}\right)$. We have

$$
L_{\lambda \mu}^{\prime}(q) \geq 2^{\ell(\nu)-\ell(\mu)} L_{\lambda \nu}^{\prime}(q), \quad \text { for } \mu \leq \nu \text { in dominance order. }
$$

We can prove this fact by using induction and the recurrence (25) for the case $\mu_{1}=\nu_{1}$.
Example 3. Let $\lambda=(6,2), \mu=(4,3,1), \nu=(5,2,1)$. We have $n(\lambda)=2, n(\mu)=5$, and $n(\nu)=4$. The L^{\prime} polynomials are

$$
L_{\lambda \mu}^{\prime}=q^{5-2}\left(4 / q^{2}+4 / q^{3}\right)=4+4 q, \quad L_{\lambda \nu}^{\prime}=q^{4-2}\left(2 / q+4 / q^{2}\right)=4+2 q
$$

and thus $L_{\lambda \mu}^{\prime}(q) \geq 2^{3-3} L_{\lambda \nu}^{\prime}(q)$.

Another property of the Kostka-Foulkes polynomials case that seems to hold in our case refers to the growth of the polynomials L. For the Kostka-Foulkes polynomials the conjecture is due to Gupta (see [1] and references therein).

Conjecture 9. If r is an integer that is not a part in either partitions λ or μ, then

$$
L_{\lambda+(r), \mu+(r)}(q) \geq L_{\lambda \mu}(q)
$$

The case where $r>\lambda_{1}$ (which also ensures that $r>\mu_{1}$) is obviously true since $L_{(r, \lambda),(r, \mu)}(q)=$ $L_{\lambda \mu}(q)$ (see Corollary 5).
Example 4. Let $\lambda=(5,3), \mu=(4,3,1)$ and $r=2$. We have

$$
L_{(5,3,2),(4,3,2,1)}(q)-L_{(5,3),(4,3,1)}(q)=2 q+4 q^{2}+8 q^{3}-\left(2 q+4 q^{2}\right)=8 q^{3}
$$

The polynomials $L_{\lambda \mu}(q)$ have a similar interpretation to property 9 using an analog of the q Kostant partition function. Using the formal inversion from [1], equation (12) may be written as

$$
\begin{equation*}
q_{\lambda}[X]=\prod_{i<j}\left(\frac{1-R_{i j}}{1+R_{i j}}\right)^{-1} Q_{\lambda}[X] \tag{28}
\end{equation*}
$$

In fact if we let $\zeta_{n}:=\prod_{i<j}\left(\frac{1-x_{i} / x_{j}}{1+x_{i} / x_{j}}\right)^{-1}$, we have that $\zeta_{n}=\sum_{\alpha \in \mathbb{Z}^{n}} \mathcal{R}(\alpha) e^{\alpha}$ where $\mathcal{R}(\alpha)=\sum_{t} a_{t} 2^{t}$
and a_{t} counts the number of ways the vector α can be written as a sum of positive roots of type A_{n-1}, t of which are distinct. The positive roots in the root lattice of A_{n-1} are $\left\{e_{i}-e_{j}\right\}_{1 \leq i<j \leq n}$, where $e_{i}=(0, \ldots, 1, \ldots 0)$ is the canonical basis of \mathbb{Z}^{n}.
The q-analog of ζ_{n} is defined to be

$$
\zeta_{n}(q):=\prod_{i<j}\left(\frac{1-q x_{i} / x_{j}}{1+q x_{i} / x_{j}}\right)^{-1}
$$

and thus $\zeta_{n}(q)=\sum_{\alpha \in \mathbb{Z}^{n}} \mathcal{R}_{q}(\alpha) e^{\alpha}$ where $\mathcal{R}_{q}(\alpha)=\sum_{t, k} a_{t, k} 2^{t} q^{k}$ and $a_{t, k}$ counts the number of ways the vector α can be written as a sum of k positive roots, t of which are distinct.

We can express the Q-Kostka polynomials in terms of $\mathcal{R}_{q}(\alpha)$ as

$$
L_{\lambda \mu}(q)=\sum_{\alpha: Q_{\alpha+\mu}= \pm 2^{t} Q \lambda} \pm 2^{t} \mathcal{R}_{q}(\alpha)
$$

It is possible to express the equation above using the action of the symmetric group on Schur's Q-functions, yielding an alternating sum similar to Property 9. Unfortunately the action of the symmetric group on Schur's Q-functions indexed by a general integer vector is not as elegant as for Schur functions (due to relation (15)).
Remark: Most of the properties of the Q-Kostka polynomials $L_{\lambda \mu}(q)$ are analogous to the KostkaFoulkes. A few properties for the Kostka-Foulkes polynomials do not have a corresponding property for the Q-Kostka polynomials.

1. The analog of Property 6 does not seem to hold since computations of $G_{\lambda}[X ; q]$ where q is set to a root of unity do not factor.
2. There does not seem to exist an elegant relationship between $G_{\lambda}[X ; q]$ and its dual basis (Property 11).
3. A property similar to that of Property 10 does not seem to hold. We do not know if there is a relationship between $G_{\lambda}[X ; q]$ and a Hall-like algebra.
4. The symmetries of the Macdonald symmetric function in Λ cannot hold in Γ and do not suggest what a two parameter analog of what these functions must be.
3.3. Generalized (parabolic) Q-Kostka polynomials. Shimozono and Weyman [17], defined a generalization of the Kostka-Foulkes polynomials that are a q-analog of the Littlewood-Richardson coefficients. They were originally defined as the coefficient of a Schur function in a symmetrized rational series, however it became clear in later work [18] that they can be defined as coefficients in families of symmetric functions using formulas similar to those presented here.

This construction exists in complete analogy within the Q-function algebra. We will create a family of functions in Γ which are indexed by a sequence of strict partitions. Let $\mu^{*}=\left(\mu^{(1)}, \mu^{(2)}, \ldots, \mu^{(k)}\right)$ where $\mu^{(i)}$ is a strict partition and set $\eta=\left(\ell\left(\mu^{(1)}\right), \ell\left(\mu^{(2)}\right), \ldots, \ell\left(\mu^{(k)}\right)\right)$. Define $\operatorname{Roots}_{\eta}=\{(i, j)$: $1 \leq i \leq \eta_{1}+\cdots+\eta_{r}<j \leq n$ for some $\left.r\right\}$ and then define the function

$$
\begin{equation*}
G_{\mu^{*}}[X ; q]=\prod_{(i, j) \in \text { Roots }_{\eta}} \frac{1+q R_{i j}}{1-q R_{i j}} Q_{\bar{\mu}^{*}}[X] \tag{29}
\end{equation*}
$$

A generating function, vertex operator, and a Morris-like recurrence analogous to equations (21), (23) and (25) may be derived from this definition.

If we set $\bar{\mu}^{*}$ equal to the concatenation of the partitions in μ^{*}, then $G_{\mu^{*}}[X ; 0]=Q_{\bar{\mu}^{*}}[X]$ and $G_{\mu^{*}}[X ; 1]=Q_{\mu^{(1)}}[X] Q_{\mu^{(2)}}[X] \cdots Q_{\mu^{(k)}}[X]$. Define the polynomials $L_{\lambda \mu^{*}}(q)$ by the expansion

$$
\begin{equation*}
G_{\mu^{*}}[X ; q]=\sum_{\lambda} L_{\lambda \mu^{*}}(q) Q_{\lambda}[X] \tag{30}
\end{equation*}
$$

Computing these coefficients suggests the following remarkable conjecture and indicates that these coefficients are an important q-analog of the structure coefficients of the $Q_{\lambda}[X]$ functions in the same way that the parabolic Kostka coefficients are q-analogs of the Littlewood-Richardson coefficients.

Conjecture 10. For a sequence of partitions μ^{*}, if $\overline{\mu^{*}}$ is a partition then $L_{\lambda \mu^{*}}(q)$ is a polynomial in q with non-negative integer coefficients.
4. Appendix: Tables of $2^{\ell(\lambda)-\ell(\mu)} L_{\lambda \mu}(q)$ FOR $n=4,5,6,7,8,9$

$$
\left[\begin{array}{cc}
(3,1) & (4) \\
1 & q \\
0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
(3,2) & (4,1) & (5) \\
1 & 2 q & q^{2} \\
0 & 1 & q \\
0 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{cccc}
(3,2,1) & (4,2) & (5,1) & (6) \\
1 & 2 q^{2}+q & 2 q^{3}+q^{2} & q^{4} \\
0 & 1 & 2 q & q^{2} \\
0 & 0 & 1 & q \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{ccccc}
(4,2,1) & (4,3) & (5,2) & (6,1) & (7) \\
1 & q & 2 q^{2}+q & 2 q^{3}+q^{2} & q^{4} \\
0 & 1 & 2 q & 2 q^{2} & q^{3} \\
0 & 0 & 1 & 2 q & q^{2} \\
0 & 0 & 0 & 1 & q \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{cccccc}
(4,3,1) & (5,2,1) & (5,3) & (6,2) & (7,1) & (8) \\
1 & 2 q & 2 q^{2}+q & 2 q^{2}+2 q^{3} & q^{3}+2 q^{4} & q^{5} \\
0 & 1 & q & 2 q^{2}+q & 2 q^{3}+q^{2} & q^{4} \\
0 & 0 & 1 & 2 q & 2 q^{2} & q^{3} \\
0 & 0 & 0 & 1 & 2 q & q^{2} \\
0 & 0 & 0 & 0 & 1 & q \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{ccccccccc}
(4,3,2) & (5,3,1) & (5,4) & (6,2,1) & (6,3) & (7,2) & (8,1) & (9) \\
1 & 2 q+4 q^{2} & 2 q^{3}+q^{2} & 2 q^{2}+4 q^{3} & q^{2}+2 q^{4}+4 q^{3} & 4 q^{4}+q^{3}+2 q^{5} & 2 q^{6}+2 q^{5} & q^{7} \\
0 & 1 & q & 2 q & 2 q^{2}+q & 2 q^{2}+2 q^{3} & q^{3}+2 q^{4} & q^{5} \\
0 & 0 & 1 & 0 & 2 q & 2 q^{2} & 2 q^{3} & q^{4} \\
0 & 0 & 0 & 1 & q & 2 q^{2}+q & 2 q^{3}+q^{2} & q^{4} \\
0 & 0 & 0 & 0 & 1 & 2 q & 2 q^{2} & q^{3} \\
0 & 0 & 0 & 0 & 0 & 1 & 2 q & q^{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & q \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

5. Appendix: example of conjectured tableaux poset of content $(4,3,1)$
$\frac{\sqrt{3}}{11 \frac{2}{2} \frac{2}{1}}$

(1|1|1|12*2|2|3*

Figure 2. The cells marked with a k^{*} can be labeled with either k or k^{\prime}, we conjecture that the statistic is independent of these markings. The value of $G_{(4,3,1)}[X ; q]$ determines the position of each of the shifted tableaux here except for the two of shape $(6,2)$. The covering relation is unknown, but the rank function indicates that it is not the same as the charge statistic.

Acknowledgement: Thank you to Nantel Bergeron for many helpful suggestions on this research.

References

[1] Désarménien J., Leclerc B., and Thibon J.-Y., "Hall-Littlewood Functions and Kostka-Foulkes Polynomials in Representation Theory." Sèminaire Lotharingien de Combinatoire, B32c(1994), 38 pp.
[2] Haiman M., "On Mixed Insertion, Symmetry, and Shifted Young Tableaux." J. Comb Theory (A), 50(1989) 196-225.
[3] P. Hall, "The algebra of partitions." Proc. 4th Canadian Math. Congress, Banff, (1959).
[4] Jing, N., "Vertex Operators, Symmetric Functions and the Spin Group Γ_{n}. ." J. Algebra 138(1991), 340-398.
[5] Jing N., "Vertex Operators and Hall-Littlewood Symmetric Functions." Advances in Math. 87(1991), 226-248.
[6] Foulkes H. O., "A survey of some combinatorial aspects of symmetric functions." in Permutations. (1974) GauthierVillars, Paris.
[7] Fulton W., Young Tableaux. Cambridge University Press, Cambridge, 1997.
[8] Garsia, A. M., "Orthogonality of Milne's polynomials and raising operators." Discrete Math, 99, 247-64.
[9] Kirillov A., "Ubiquity of Kostka polynomials." Phys. and Comb., Proceedings of the Nagoya 1999 International Workshop on Physics and Combinatorics, Nagoya University, August 23-27, (1999), 85-200.
[10] A. N. Kirillov and N. Yu. Reshetikhin, The Bethe Ansatz and the combinatorics of Young tableaux, J. Soviet Math. 41 (1988), 925-955.
[11] Lascoux A., Pragacz P., "Orthogonal Divided Differences and Schubert Polynomials, \tilde{P}-Functions and Vertex Operators." Mich. Math. J. 48(2000), 417-441.
[12] Lascoux A., Schützenberger M. P., "Sur une conjecture de H. O. Foulkes." C. R. Acad. Sci. Paris, 286A(1978) 323-324.
[13] Lascoux A. and Schützenberger M. P., "Le Monoid plaxique." Noncommutative structures in Algebra and Geometric Combinatorics, CNR, Rome. 109(1981), 129-156.
[14] Macdonald, I. G., Symmetric Functions and Hall Polynomials. Cambridge University Press, Cambridge, 1995.
[15] Sagan, B. E., "Shifted Tableaux, Schur Q-functions and a Conjecture of R. Stanley." J. Comb. Theory (A), 45(1987), 62-103.
[16] Schilling A. and Warnaar O., Inhomogeneous lattice paths, generalized Kostka polynomials and A_{n-1} supernomials, Comm. in Math. Phys. 202, (1999), 359-401.
[17] Shimozono M., Weyman J., "Graded characters of modules supported in the closure of a nilpotent conjugacy class." European J. Combin. 21 no. 2(2000) 257-288.
[18] Shimozono M., Zabrocki M., "Hall-Littlewood Vertex Operators and Generalized Kostka Polynomials." Adv. Math. 158(2001), 66-85.
[19] Stembridge, J. R., "Shifted Tableaux and the Projective Representations of Symmetric Groups." Advances in Math. 74(1989), 87-134.
[20] Stembridge, J. R., "On Schur's Q-functions and the Primitive Idempotents of a Commutative Hecke Algebra." J. Alg. Combinatorics 1(1992), 71-95.
[21] Worley, D. R., "A Theory of Shifted Young Tableaux." Thesis, MIT (1984).
E-mail address: tudose@math.umn.edu, zabrocki@mathstat.yorku.ca
School of Mathematics, University of Minnesota, Minneapolis, MN, 55455 USA and Department of Mathematics and Statistics, York University, Toronto, Ontario, M3J 1P3 CANADA

