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Proof of the 2-part Compositional Shuffle Conjecture
by

A. M. Garsia, G. Xin and M. Zabrocki

ABSTRACT
In a recent paper [9] J. Haglund, J. Morse and M. Zabrocki advanced a refinement of the Shuffle

Conjecture of Haglund et all [8]. They introduce the notion of “touch composition ” of a Dyck path,

whose parts yield the positions where the path touches the diagonal. They conjectured that the polyno-

mial
〈
∇Cp1

Cp2
· · ·Cpk

1 , hµ1
hµ2

· · ·hµl

〉
, where Cp1

Cp2
· · ·Cpk

1 is essentially a rescaled Hall-Littlewood

polynomial and ∇ is the Macdonald eigen-operator introduced in [1], enumerates by t
area

q
dinv the parking

functions whose Dyck paths hit the diagonal by (p1, p2, . . . , pk) and whose diagonal word is a shuffle of l

increasing words of lengths µ1, µ2, . . . , µk. In this paper we prove the case l = 2 of this conjecture.

I. Introduction
Parking functions are endowed by a colorful history and jargon (see for instance [7]) that is very

helpful in dealing with them combinatorially as well as analytically. Here we will represent them interchange-

ably as two line arrays or as tableaux. A single example of this correspondence should be sufficient for our

purposes. In the figure below we have on the left the two line array, with the list of cars V = (v1, v2, . . . , vn)

on top and their diagonal numbers U = (u1, u2, . . . , un) on the bottom. In the corresponding n× n tableau

of lattice cells we have shaded the “main diagonal ” (or 0-diagonal) and drawn the “supporting” Dyck path.

The component ui gives the number of lattice cells EAST of the i
th NORTH step and WEST of the main

diagonal. The cells adjacent to the NORTH steps of the path are filled with the corresponding cars from

bottom to top.

PF =

[
4 6 8 1 3 2 7 5
0 1 2 2 3 0 1 1

]
⇐⇒ I.1

The resulting tableau uniquely represents a parking function if and only if the cars increase up the columns.

A necessary and sufficient condition for the vector U to give a Dyck path is that

u1 = 0 and 0 ≤ ui ≤ ui−1 + 1 I.2

This given, the column increasing property of the corresponding tableau is assured by the requirement that

V = (v1, v2, . . . , vn) is a permutation in Sn satisfying

ui = ui−1 + 1 =⇒ vi > vi−1 I.3

We should mention that the component ui may also be viewed as the order of the diagonal supporting car

vi. In the example above, car 3 is in the third diagonal, 1 and 8 are in the second diagonal, 5, 7 and 6 are

in the first diagonal and 2 and 4 are in the main diagonal. We have purposely listed the cars by diagonals

from right to left starting with the highest diagonal. This gives the “diagonal word” of PF which we will

denote σ(PF ). It is easily seen that σ(PF ) can also be obtained directly from the 2-line array by successive
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right to left readings of the components of the vector V = (v1, v2, . . . , vn) according to decreasing values of

u1, u2, . . . , un. In previous work, each parking function is assigned a “weight ”

w(PF ) = t
area(PF )

q
dinv(PF ) I.4

where

area(PF ) = u1 + u2 + · · ·+ un I.5

and

dinv(PF ) =
∑

1≤i<j≤n

(
χ(ui = uj & vi < vj) + χ(ui = uj + 1& vi > vj)

)
I.6

It is clear from this imagery, that the sum in I.5 gives the total number of cells between the supporting Dyck

path and the main diagonal. We also see that two cars in the same diagonal with the car on the left smaller

than the car on the right will contribute a unit to dinv(PF ), we call this a “primary diagonal inversion” . The

same holds true when a car on the left is bigger than a car on the right with the latter in the adjacent lower

diagonal, we call this a “secondary diagonal inversion”. For instance in I.1 we see (6, 7) as the only primary

diagonal inversion and (6, 2), (8, 7), (8, 5) as the secondary ones. Thus in the the present example we have

area(PF ) = 10, dinv(PF ) = 4, σ(PF ) = 31857624,

yielding

w(PF ) = t
10
q
4

Here and after, the vectors U and V in the two line representation will be also referred to as U(PF ) and

V (PF ). It will also be convenient to denote by PFn the collection of parking functions in the n× n lattice

square.

In [9] J. Haglund, M. Morse and M. Zabrocki introduced a new parking function statistic they call

“touch composition ” . This is the composition p(PF ) whose parts give the sizes of the intervals between

successive 0’s of the vector U(PF ). Geometrically the parts of p(PF ) yield the places where the supporting

Dyck path hits the main diagonal. For instance for the PF in I.1 we have p(PF ) = (5, 3).

The “Compositional Shuffle conjecture ” [9] states that for any composition (p1, p2, . . . , pk) |= n and

any partition µ = (µ1, µ2, . . . , µl) � n we have the identity

〈
∇Cp1

Cp2
· · ·Cpk

1 , hµ1
hµ2

· · ·hµl

〉
=

∑

PF∈PFn

p(PF )=(p1,p2,...,pk)

t
area(PF )

q
dinv(PF )

χ(σ(PF ) ∈ E1∪∪E2∪∪ · · · ∪∪El)

I.7

where ∇ is the Macdonald eigen-operator introduced in [1], hµ1hµ2 · · ·hµl
is the “homogeneous” symmetric

function basis indexed by µ, E1, E2, . . . , El are successive segments of the word 1234 · · ·n of respective lengths

µ1, µ2, . . . , µl and the symbol “χ(σ(PF ) ∈ E1∪∪E2∪∪ · · · ∪∪El)” is to indicate that the sum is to be carried

out over parking functions in PFn whose diagonal word is a shuffle of the words E1, E2, . . . , El. Last but

not least the operator Ca acts on a a symmetric polynomial F [X] according to the plethystic formula

CaF [X] = (− 1
q )

a−1
F
[
X − 1−1/q

z

] ∑

m≥0

z
m
hm[X]

∣∣∣
za
, I.8
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In this paper we show that the symmetric function methods developed in [5] can be used to prove the l = 2

case of I.7, that is the identity
〈
∇Cp1

Cp2
· · ·Cpk

1 , hrhn−r

〉
=

∑

PF∈PFn

p(PF )=(p1,p2,...,pk)

t
area(PF )

q
dinv(PF )

χ
(
σ(PF ) ∈ 12 · · · r ∪∪ r + 1 · · ·n

)
I.9

Since in [9] it is shown that ∑

p|=n

Cp1Cp2 · · ·Cpk
1 = en, I.10

summing I.9 over all compositions of n we obtain that
〈
∇en , hrhn−r

〉
=

∑

PF∈PFn

t
area(PF )

q
dinv(PF )

χ
(
σ(PF ) ∈ 12 · · · r ∪∪ r + 1 · · ·n

)
I.11

which is the 2-part case of the original Shuffle Conjecture. The identity in I.11 was, in fact, established, in a

2004 paper [6], by Haglund as the ultimate bi-product of an intricate variety of new identities of Macdonald

Polynomial Theory. Our proof of I.9 turns out to be much simpler and uses even less machinery than the

simplified version of Haglund’s original proof given in [4] . Basically, as was done in [5], we only use a small

collection of Macdonald polynomial identities established much earlier in [2] and [3] to prove a recursion

satisfied by the left hand side of I.9 . Then show that the right hand side satisfies the same recursion, with

equality in the base cases.

This recursion, which is the crucial result of this paper, may be stated as follows

Theorem I.1
For all compositions p = (p1, p2, . . . , pk) and 0 < r < n we have

〈
∇Cp1Cp2 · · ·Cpk

1 , hrhn−r

〉
= t

p1−1
〈
∇Bp1−2Cp2 · · ·Cpk

1 , hr−1hn−1−r

〉
+

+ χ(p1 = 1)
(〈

∇Cp2
· · ·Cpk

1 , hrhn−1−r

〉
+

〈
∇Cp2

· · ·Cpk
1 , hr−1hn−r

〉) I.9

with Ba = ωB̃aω and for any symmetric function F [X]

B̃aF [X] = F
[
X − 1−q

z

] ∑

m≥0

z
m
hm[X]

∣∣∣
za

I.10

What is remarkably different in this case in contrast with the developments in [5], is that here the

symmetric function side guided us on what had to be done in the combinatorial side. In fact we shall see

that I.9 unravels in a totally unexpected manner some surprising inclusion-exclusions of Parking Functions.

The reader is advised to have at hand a copy of [5] in reading the present work not only for specific

references to the identities we use here but also for the notation and definitions of the various symmetric

function constructs we deal with in this writing. We already gave in section 2 of [5] titled a “ A Macdonald

Polynomial kit”’ a detailed list of the Macdonald Polynomial Theory identities that play an essential role in

this Branch of Algebraic combinatorics, and thus we will not repeat it here .

This paper is divided into three sections, in the first section we prove some auxiliary symmetric

function identities we use here that are not in [5], in the second section we prove Theorem I.1 and in the

third section we derive all its combinatorial consequences.

Acknowledgment. The Authors are indebted to Angela Hicks for helpful guidance in the combinatorial

part of this work.
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1. Auxiliary symmetric function identities

As we mentioned in the Introduction, this section makes heavy use of the notation, definitions and

identities listed in section 2 of [5]. We will present this auxiliary material as a sequence of propositions.

The first obstacle that is encountered in dealing with the Shuffle Conjecture is to obtain a useable

expression for the scalar product of a Macdonald polynomial with a homogeneous basis element, in the

two-part case this obstacle can be overcome by means of the following identity proved in [3]

Proposition 1.1

For all f ∈ Λ=r and µ � n we have

〈fhn−r , H̃µ〉 = ∇−1
(
ωf [X−ε

M ]
)∣∣

X→MBµ−1
1.1

This given, we obtain

Proposition 1.2

For µ � n and 0 < r < n

〈hrhn−r , H̃µ〉 = Fr[MBµ − 1] 1.2

with

Fr[X] =

r∑

k=0

hr−k[
1
M ]∇−1

ek[
X
M ] 1.3

Proof

From 1.1 with f = hr we derive that

〈hrhn−r , H̃µ〉 = ∇−1
(
er[

X−ε
M ]

)
=

r∑

k=0

er−k[
−ε
M ]∇−1

ek[
X
M ] =

r∑

k=0

hr−k[
1
M ]∇−1

ek[
X
M ]

and 1.2 is thus a consequence of Proposition 1.1.

Proposition 1.3
With n factors C1 we have

C1C1 · · ·C11 = q
−(n2)(q, q)nhn

[
X

1−q

]
= q

−(n2)H̃n[X; q] 1.4

In particular it follows that

∇C1C1 · · ·C11 = (q, q)nhn

[
X

1−q

]
1.5

Proof
From the definition in 1.8 it follows that

C11 = e1[X] = (1− q)e1[
X

1−q ]

which the case n = 1 of 1.4. So we will proceed by induction and assume that we have

C
n−1
1 1 = q

−(n−1
2 )(q, q)n−1hn−1

[
X

1−q

]
.
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This given, applying C1 to both sides and using I.8 again we get

q(
n−1
2 )

(q,q)n−1
C

n
1 1 = hn−1

[ (X− 1−1/q
z )

1−q

] ∑

m≥0

z
m
hm[X]

∣∣∣
z

∣∣∣
z

= hn−1

[
X

1−q + (X − 1−1/q
z(1−q) )

] ∑

m≥0

z
m
hm[X]

∣∣∣
z

= hn−1

[
X

1−q + 1
qz

] ∑

m≥0

z
m
hm[X]

∣∣∣
z

∣∣∣
z

=

n−1∑

k=0

hn−1−k[
X

1−q ]
1
qk
hk+1[X] = q

n−1∑

k=0

hn−1−k[
X

1−q ]hk+1[
X
q ]

= q

n∑

k=0

hn−k[
X

1−q ]hk[
X
q ] − qhn[

X
1−q ]

= qhn

[
X

1−q + X
q

]
− qhn[

X
1−q ] = qhn

[X(q+(1−q)
q(1−q)

]
− qhn[

X
1−q ]

= 1
qn−1hn

[
X

(1−q)

]
− qhn[

X
1−q ] = 1−qn

qn−1 hn[
X

1−q ]

This completes the induction proves the first equality in 1.4. The second equality i results from a well known

formula for the Macdonald polynomial H̃µ when µ = (n) The equality in 1.5 follows then from the definition

of the operator ∇.

Our next auxiliary result shows how the C and B operators commute, but to prove it we need some

notation. For E1, E2, . . . , Ek given expressions and P [X] a symmetric polynomial we set

P
(r1,r2,...,rk)[X] = P [X + E1u1 + E2u2 + · · ·+ Ekuk]

∣∣∣
u
r1
1 u

r2
2 ···urk

k

The important property is that if

Q
(r1)[X] = P [X + E1u1]

∣∣∣
u
r1
1

then

Q
(r1)[X + E2u2]

∣∣∣
u
r2
2

= P [X + E1u1 + E2u2]
∣∣∣
u
r1
1 u

r2
2

= P
(r1,r2)[X]

Proposition 1.4

(
qCbBaP [X] − BaCb

)
P [X] = (q − 1)(−1)a+b−1

/q
b−1 ×






0 if a+ b > 0
P [X] if a+ b = 0∑

r1+r2=−(a+b)P
r1,r2 [X] if a+ b < 0

1.6

Proof

Using I.8 we get (with E1 = ε(1− q))

(−q)b−1CbP [X] =

d∑

r1=0

P
(r1)[X] 1

zr1

∑

m≥0

z
m
hm[X]

∣∣∣
zb

=

d∑

r1=0

P
(r1)[X]hb+r1 [X]
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and 1.10 gives (with E2 = ε(1− q))

(−q)b−1BaCbP [X] =

d∑

r1=0

P
(r1)

[
X + ε

1−q
z2

]
hb+r1

[
X + ε

1−q
z2

]
Ω[−εz2X]

∣∣∣
za
2

=

d∑

r1,r2=0

P
(r1,r2)( 1

z2
)r2

b+r1∑

s=0

hb+r1−s[X]hs

[
ε
1−q
z2

]
Ω[−εz2X]

∣∣∣
za
2

=

d∑

r1,r2=0

b+r1∑

s=0

P
(r1,r2)hb+r1−s[X]hs

[
ε(1− q)

]
Ω[−εz2X]

∣∣∣
z
a+r2+s

2

=

d∑

r1,r2=0

b+r1∑

s=0

P
(r1,r2)[X]hb+r1−s[X](−1)shs

[
(1− q)

]
ha+r2+s[−εX]

Now note that (2.24) of [5] for r = 0 and u = q gives

hs

[
1− q

]
=

{
1 if s = 0
1− q if s > 0

1.13

We can thus write

(−q)b−1BaCbP [X] =

d∑

r1,r2=0

P
(r1,r2)[X]hb+r1 [X]ha+r2 [−εX] +

+ (1− q)
d∑

r1,r2=0

b+r1∑

s=1

P
(r1,r2)[X]hb+r1−s[X](−1)sha+r2+s[−εX]

and the change of summation index u = a+ r2 + s gives

(−q)b−1BaCbP [X] =

d∑

r1,r2=0

P
(r1,r2)[X]hb+r1 [X]ha+r2 [−εX] +

+ (1− q)
d∑

r1,r2=0

a+b+r1+r2∑

u=a+r2+1

P
(r1,r2)[X]ha+b+r1+r2−u[X](−1)u−a−r2hu[−εX]

1.14

Similarly we get (with E1 = ε(1− q))

BaP [X] =

d∑

r2=0

P
r2 [X]( 1

z2
)r2

∑

u≥0

z
u
2hu[−εz2X]

∣∣∣
za
2

=

d∑

r2=0

P
r2 [X]hr2+a[−εX]

Thus (with E2 = ε(1− q))

(−q)b−1CbBaP [X] =

d∑

r2=0

P
r2
[
X − 1−1/q

z

]
hr2+a

[
− ε

(
X − 1−1/q

z1

)]
Ω[z1X]

∣∣∣
zb
1

=

d∑

r1,r2=0

P
r1,r2 [X]( 1

z1
)r1

r2+a∑

s=0

hr2+a−s[−εX] ( 1
z1
)shs

[
ε(1− 1/q)

]
Ω[z1X]

∣∣∣
zb
1

,

=
d∑

r1,r2=0

P
r1,r2 [X]

r2+a∑

s=0

hr2+a−s[−εX] (−1)shs

[
1− 1/q

]
hr1+s+b[X].
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Note that now 1.13 gives

hs

[
1− 1/q

]
=

{
1 if s = 0
1− 1/q if s > 0

Thus

(−q)b−1CbBaP [X] =
(
1− (1− 1/q)

) d∑

r1,r2=0

P
r1,r2 [X]hr2+a[−εX]hr1+b[X]

+
(
1− 1/q

) d∑

r1,r2=0

P
r1,r2 [X]

r2+a∑

s=0

hr2+a−s[−εX] (−1)s hr1+s+b[X]

and the change of summation index u = r2 + a− s gives

(−q)b−1CbBaP [X] =
1

q

d∑

r1,r2=0

P
r1,r2 [X]hr2+a[−εX]hr1+b[X]

+
(
1− 1/q

) d∑

r1,r2=0

P
r1,r2 [X]

a+r2∑

u=0

hu[−εX] (−1)r2+a−u
ha+b+r1+r2−u[X]

In summary we get

(−q)b−1
qCbBaP [X] =

d∑

r1,r2=0

P
r1,r2 [X]hr2+a[−εX]hr1+b[X]

+
(
q − 1

)
(−1)a

d∑

r1,r2=0

P
r1,r2 [X]

a+r2∑

u=0

hu[−X] (−1)r2 ha+b+r1+r2−u[X]

On the other hand 1.14 can also be written as

(−q)b−1BaCbP [X] =
d∑

r1,r2=0

P
(r1,r2)[X]hr2+a[−εX]hr1+b[X] +

+ (−1)a(1− q)

d∑

r1,r2=0

a+b+r1+r2∑

u=a+r2+1

P
(r1,r2)[X]ha+b+r1+r2−u[X](−1)r2hu[−X]

and thus subtraction gives

(−q)b−1
(
qCbBaP [X] − BaCb

)
P [X] =

(
q − 1

)
(−1)a

d∑

r1,r2=0

P
r1,r2 [X]

a+b+r1+r2∑

u=0

hu[−X] (−1)r2 ha+b+r1+r2−u[X]

=
(
q − 1

)
(−1)a

d∑

r1,r2=0

P
r1,r2 [X](−1)r2 ha+b+r1+r2 [X −X]

Carrying out the summations and using the definition of P r1,r2 [X] we finally obtain

(−q)b−1
(
qCbBaP [X] − BaCb

)
P [X] = (q − 1)(−1)a ×






0 if a+ b > 0
P [X] if a+ b = 0∑

r1+r2=−(a+b)P
r1,r2 [X] if a+ b < 0

which is easily seen to be 1.6, completing the proof.
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In particular we have shown that

Theorem 1.1(Haglund-Morse-Zabrocki)

For all a+ b > 0, our Hall-Littlewood operators have the following commutativity property

Ba Cb = qCb Ba 1.15

An important ingredient in Macdonald Polynomial Theory is a modified symmetric function scalar

product we will refer to as the “∗-scalar product” which makes the basis {H̃µ[X; q, t]}µ an orthogonal set.

More precisely, we have the basic identities

〈
H̃λ, H̃µ

〉
∗ =

{
0 if λ �= µ

wµ(q, t) if λ = µ
1.16

where the wµ(q, t) are polynomials in N[q, t] whose precise definition can be found in section 2 of [5].

The ∗-scalar product and the Hall scalar product are related by the identity ([5] (2.16)),

〈
f , g

〉
=

〈
f , ωg

∗〉
∗ 1.17

where for convenience, for any symmetric function g[X] we set

g
∗[X] = g

[
X
M

]
(with M = (1− q)(1− t)) 1.18

To compute the action of ∇ on a symmetric function we need to expand that function in terms of

the basis {H̃µ[X; q, t]}µ and 1.16 is the tool we need to carry this out. In the sequel we will make use of the

following expansions

Proposition 1.5
For all n ≥ 1 and 0 < r < n we have

a) en

[
X
M

]
=

∑

µ�n

H̃µ[X; q.t]

wµ
, b) hn

[
X
M

]
=

∑

µ�n

TµH̃µ[X; q, t]

wµ

c) er

[
X
M

]
en−r

[
X
M

]
=

∑

µ�n

H̃µ[X; q.t]

wµ
Fr[MBµ − 1]

1.19

with Fr[X] given by 1.3

Proof
Using 1.16 and 1,17 we obtain

e
∗
n =

∑

µ�n

H̃µ[X; q.t]

wµ

〈
H̃µ , hn

〉

and 1.19 a) follows since it is well known, ([5] (2.25)), that

〈
H̃µ , hn

〉
= 1 1.20
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Similarly we get

h
∗
n =

∑

µ�n

H̃µ[X; q.t]

wµ

〈
H̃µ , en

〉

and 1.19 b) follows since it is well known, ([5] (2.25)), that

〈
H̃µ , en

〉
= Tµ 1.21

Formula 1.19 c) is less immediate. We can again start by writing

e
∗
re

∗
n−r =

∑

µ�n

H̃µ[X; q.t]

wµ

〈
H̃µ , hrhn−r

〉

However, we have no simple evaluation for the scalar product
〈
H̃µ , hrhn−r

〉
other than resorting to the

identity in 1.2 which gives

e
∗
re

∗
n−r =

∑

µ�n

H̃µ[X; q.t]

wµ
Fr[MBµ − 1]

with Fr given by 1.3, This proves 1.19 c) and completes our proof.

Remark 1.1
As we will shortly see our proof of Theorem I.1 will require working with polynomial ∇e

∗
re

∗
n−r.

Since, ∇ is defined [1], by setting for the Macdonald basis

∇H̃µ = TµH̃µ 1.22

formula 1.19 c) gives

∇er

[
X
M

]
en−r

[
X
M

]
=

∑

µ�n

TµH̃µ[X; q.t]

wµ
Fr[MBµ − 1] 1.23

Introducing the operator θr by setting for the Macdonald basis

θrH̃µ = Fr[MBµ − 1]H̃µ 1.24

Formula 1.19 b) allows us to write 1.23 in the form

∇e
∗
re

∗
n−r = θrh

∗
n 1.25

We surprised ourselves to discover that such a simple idea allows us to get around the unavailability of a

simple evaluation for the scalar product
〈
H̃µ , hrhn−r

〉
. By delivering an expression for ∇e

∗
re

∗
n−r that we

can work with in our calculations, this idea made possible all the results of the present paper.
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2. Proof of the symmetric function recursion
Our point of departure is the following basic reduction

Theorem 2.1
The identity

〈
∇Cp1

Cp2
· · ·Cpk

1 , hrhn−r

〉
= t

p1−1
〈
∇Bp1−2Cp2

· · ·Cpk
1 , hr−1hn−1−r

〉
+

+ χ(p1 = 1)
(〈
∇Cp2 · · ·Cpk

1 , hrhn−1−r

〉
+

〈
∇Cp2 · · ·Cpk

1 , hr−1hn−r

)〉 2.1

holds for all compositions (p1, p2, . . . , pk) |= n and all 0 < r < n, if and only if the following symmetric function

identity holds for all 0 < r < n and a ≥ 1

C
∗
aθrh

∗
n[X] = t

a−1
B

∗
a−2θr−1h

∗
n−2[X] + χ(a = 1)

(
θrh

∗
n−1[X] + θr−1h

∗
n−1[X]

)
2.2

where the operators C∗
a and B∗

a are the ∗-scalar product adjoints of Ca and Ba

Proof
Note first that since the polynomials Cp2 · · ·Cpk

1 are essentially only a rescaled version of the Hall-

Littlewood polynomials the span the space Λ=(n−p1). Thus (2,1) can hold true as asserted if and only if for

all F [X] ∈ Λ=(n−p1) we have

〈
∇Cp1

F [X] , hrhn−r

〉
= t

p1−1
〈
∇Bp1−2F [X] , hr−1hn−1−r

〉
+

+ χ(p1 = 1)
(〈

∇F [X] , hrhn−1−r

〉
+

〈
∇F [X] , hr−1hn−r

〉)

Now passing to ∗-scalar products we may rewrite this identity in the form

〈
∇Cp1

F [X] , e∗re
∗
n−r

〉
∗ = t

p1−1
〈
∇Bp1−2F [X] , e∗r−1e

∗
n−1−r

〉
∗ +

+ χ(p1 = 1)
(〈

∇F [X] , e∗re
∗
n−1−r

〉
∗ +

〈
∇F [X] , e∗r−1e

∗
n−r

〉
∗

)

Next we move all the operators acting on F [X] to the other side of their respective ∗-scalar products and

obtain 〈
F [X] , C∗

p1
∇e

∗
re

∗
n−r

〉
∗ = t

p1−1
〈
F [X] , B∗

p1−2∇e
∗
r−1e

∗
n−1−r

〉
∗ +

+ χ(p1 = 1)
(〈

F [X] , ∇e
∗
re

∗
n−1−r

〉
∗ +

〈
F [X] , ∇e

∗
r−1e

∗
n−r

〉
∗

) 2.3

Of course ∇ does not get a “∗” since, by I.16, all Macdonald polynomials eigen-operators are necessarily

self-adjoint with respect to the ∗-scalar product.
But now the arbitrariness of F [X] shows that 2.3 can be true if and only if we have the following

symmetric function equality

C
∗
p1
∇e

∗
re

∗
n−r = t

p1−1
B

∗
p1−2∇e

∗
r−1e

∗
n−1−r + χ(p1 = 1)

(
∇e

∗
re

∗
n−1−r + ∇e

∗
r−1e

∗
n−r

)
2.3

Replacing p1 by a and using 1.25 for various values of r and n yields 2.2 and completes our proof.
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Our next task is now to prove 2.2. To begin we will need the following expansion

Proposition 1.1

θrh
∗
n[X] =

r∑

k=0

hr−k[
1
M ](−1)k

∑

ν�k

1

wν
hn

[
X( 1

M −Bν)
]

2.4

Proof
Note first that 1.23 and 1.25 give

θrh
∗
n[X] =

∑

µ�n

TµH̃µ[X; q.t]

wµ
Fr[MBµ − 1] 2.5

Recall from 1.3 that

Fr[X] =

r∑

k=0

hr−k[
1
M ]∇−1

ek[
X
M ]

and since 1.19 a) and 1.22 give

∇−1
ek[

X
M ] =

∑

ν�k

T
−1
ν H̃ν [X; q, t]

wν

we can write

Fr[X] =

r∑

k=0

hr−k[
1
M ]

∑

ν�k

T
−1
ν H̃ν [X; q, t]

wν

and 2.5 becomes

θrh
∗
n[X] =

∑

µ�n

TµH̃µ[X; q, t]

wµ

r∑

k=0

hr−k[
1
M ]

∑

ν�k

T
−1
ν H̃ν [MBµ − 1]; q, t]

wν

=

r∑

k=0

hr−k[
1
M ]

∑

ν�k

1

wν

∑

µ�n

TµH̃µ[X; q, t]

wµ

H̃ν [MBµ − 1]; q, t]

Tν

2.6

We now use the Macdonald reciprocity formula (2.21) of [5],

H̃ν [MBµ − 1; q, t]

Tν
= (−1)n−k H̃µ[MBν − 1]; q, t]

Tµ

and 2.6 becomes

θrh
∗
n[X] =

r∑

k=0

hr−k[
1
M ](−1)n−k

∑

ν�k

1

wν

∑

µ�n

H̃µ[X; q, t]H̃µ[MBν − 1; q, t]

wµ

and a use of the Macdonald Cauchy identity (2.17) of [5]

∑

µ�n

H̃µ[X; q, t]H̃µ[Y ; q, t]

wµ
= en

[
XY
M

]

gives

θrh
∗
n[X] =

r∑

k=0

hr−k[
1
M ](−1)n−k

∑

ν�k

1

wν
en

[
X(Bν − 1

M )
]

which is 2.4 because of the relation (see (2.6) of [5])

en

[
X(Bν − 1

M )
]

= (−1)nhn[X
1
M −Bν ]

and our proof s now complete.
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We are now ready to start working on the identity in 2.2. We will start with the term

B
∗
a−2θr−1h

∗
n−2[X]

which, using 2.4 with r→r − 1 and n→n− 2 becomes

B
∗
a−2θr−1h

∗
n−2[X] =

r−1∑

k=0

hr−1−k[
1
M ](−1)k

∑

ν�k

1

wν
B

∗
a−2hn−2

[
X( 1

M −Bν)
]

2.7

Let us now recall that in [5] (Theorem 3.6) it was shown that the action of the operators B∗
a and C∗

a on a

symmetric polynomial P [X] may be computed by means of the two plethystic formulas

B∗
aP [X] = P

[
X + M

z

] ∑

m≥0

z
m
hm

[−X
1−t

]∣∣∣
z−a

2.9

and

C∗
aP [X] = (−1

q )a−1
P
[
X − εM

z

] ∑

m≥0

(− z
q )

m
hm

[−X
1−t

]∣∣∣
z−a

2.10

we can thus use 2.9 to get

B
∗
a−2hn−2

[
X( 1

M −Bν)
]

= hn−2

[
(X +M/z)( 1

M −Bν)
] ∑

m≥0

z
m
hm

[−X
1−t

]∣∣∣
z−a+2

=

n−2∑

s=0

hn−2−s

[
X( 1

M −Bν)
]
hs

[
M( 1

M −Bν)
]

1
zs

∑

m≥0

z
m
hm

[−X
1−t

]∣∣∣
z−a+2

=

n−2∑

s=a−2

hn−2−s

[
X( 1

M −Bν)
]
hs [1−MBν)]hs−a+2[−X/(1− t)]

Using this in 2.7 gives

B
∗
a−2θr−1h

∗
n−2[X] =

r−1∑

k=0

hr−1−k[
1
M ](−1)k ×

×
∑

ν�k

1

wν

n−2∑

s=a−2

hn−2−s

[
X( 1

M −Bν)
]
hs [1−MBν)]hs−a+2[−X/(1− t)]

=
r−1∑

k=0

hr−1−k[
1
M ](−1)k ×

×
n−2∑

s=a−2

hs−a+2[−X/(1− t)]
∑

ν�k

1

wν
hn−2−s

[
X( 1

M −Bν)
]
hs [1−MBν)]

and a change s→s− 2 of summation index finally gives

B
∗
a−2θr−1h

∗
n−2[X] =

r−1∑

k=0

hr−1−k[
1
M ](−1)k

n∑

s=a

hs−a[
−X
1−t ]

∑

ν�k

1

wν
hn−s

[
X( 1

M −Bν)
]
hs−2 [1−MBν)] 2.11
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Let us now work on the left hand side of 2.2, which, using 2.4 is simply

C
∗
aθrh

∗
n[X] =

r∑

k=0

hr−k[
1
M ](−1)k

∑

ν�k

1

wν
C

∗
ahn

[
X( 1

M −Bν)
]

2.12

Now 2.10 gives

(−q)a−1
C

∗
ahn

[
X( 1

M −Bν)
]

= hn

[
(X − εM/z)( 1

M −Bν)
] ∑

m≥0

(− z
q )

m
hm

[−X
1−t

]∣∣∣
z−a

=

n∑

s=0

hn−s

[
X( 1

M −Bν)
]
hs

[
−εM( 1

M −Bν)
]

1
zs

∑

m≥0

(− z
q )

m
hm

[−X
1−t

]∣∣∣
z−a

=
n∑

s=0

hn−s

[
X( 1

M −Bν)
]
(−1)shs [−1 +MBν ] (− 1

q )
s−a

hs−a

[−X
1−t

]

Thus

C
∗
ahn

[
X( 1

M −Bν)
]

= (−q)

n∑

s=0

hn−s

[
X( 1

M −Bν)
]
hs [−1 +MBν ] (− 1

q )
s
hs−a

[−X
1−t

]

and 2.12 becomes

C
∗
aθrh

∗
n[X] =

r∑

k=0

hr−k[
1
M ](−1)k ×

×
∑

ν�k

1

wν
(−q)

n∑

s=0

hn−s

[
X( 1

M −Bν)
]
hs [−1 +MBν ] (− 1

q )
s
hs−a

[−X
1−t

]

=
r∑

k=0

hr−k[
1
M ](−1)k ×

× (−q)
n∑

s=a

(− 1
q )

s
hs−a

[−X
1−t

]∑

ν�k

1

wν
hn−s

[
X( 1

M −Bν)
]
hs [−1 +MBν ]

2.13

We are now going to make use of the following two summation formulas ((2.28) and (2.29) of [3], see also

[10])

∑

ν→µ

cµν(q, t) (Tµ/Tν)
k =






tq
M hk+1

[
(−1 +MBν)/tq

]
if k ≥ 1 ,

Bµ(q, t) if k = 0 .

2.14

∑

µ←ν

dµν(q, t) (Tµ/Tν)
k =

{
(−1)k−1

ek−1

[
− 1 +MBν

]
if k ≥ 1 ,

1 if k = 0 .

2.15

We will start by using 2.14 in the form

hs [−1 +MBν)] = (tq)s−1
M

∑

τ→ν

cντ (
Tν

Tτ
)s−1 − χ(s = 1)
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and obtain

C
∗
aθrh

∗
n[X] =

r∑

k=0

hr−k[
1
M ](−1)k(−q)

n∑

s=a

(− 1
q )

s
hs−a

[−X
1−t

]
×

×
∑

ν�k

1

wν
hn−s

[
X( 1

M −Bν)
] (

(tq)s−1
M

∑

τ→ν

cντ (
Tν

Tτ
)s−1 − χ(s = 1)

)

=
r∑

k=0

hr−k[
1
M ](−1)k−1

n∑

s=a

t
s−1

hs−a[
−X
1−t ]

∑

ν�k

1

wν
hn−s

[
X( 1

M −Bν)
] (

M

∑

τ→ν

cντ (
Tν

Tτ
)s−1

)

+ χ(a = 1)
r∑

k=0

hr−k[
1
M ](−1)k

∑

ν�k

1

wν
hn−1

[
X( 1

M −Bν)
]

=
r∑

k=0

hr−k[
1
M ](−1)k−1

n∑

s=a

t
s−1

hs−a[
−X
1−t ]

∑

ν�k

1

wν
hn−s

[
X( 1

M −Bν)
] (

M

∑

τ→ν

cντ (
Tν

Tτ
)s−1

)

(by 2.4) + χ(a = 1)θrh
∗
n−1[X]

2.16

Now, changing the order of ν and τ summations and using the relation

wτ

wν
Mcντ = dντ ((2.30) of [5]),

we may rewrite 2.16 as

C
∗
aθrh

∗
n[X] − χ(a = 1)θrh

∗
n−1[X] =

=
r∑

k=0

hr−k[
1
M ](−1)k−1

n∑

s=a

t
s−1

hs−a[− X
1−t ]

∑

τ�k−1

1

wτ

∑

ν←τ

wτ

wν
hn−s

[
X( 1

M −Bν)
]
Mcντ (

Tν

Tτ
)s−1

=

r∑

k=0

hr−k[
1
M ](−1)k−1

n∑

s=a

t
s−1

hs−a[− X
1−t ]

∑

τ�k−1

1

wτ

∑

ν←τ

hn−s

[
X( 1

M −Bν)
]
dντ (

Tν

Tτ
)s−1

2.17

Next we split Bν(q, t) into the sum Bν(q, t) = Bτ (q, t) +
Tν

Tτ
to get

∑

ν←τ

dντ (
Tν

Tτ
)s−1

hn−s

[
X( 1

M −Bν)
]

=

=
n−s∑

u=0

hn−u−s

[
X( 1

M −Bτ )
]
hu[−X]

∑

ν←τ

dντ

(
Tν

Tτ

)u+s−1

(by (2.15)) =

n−s∑

u=0

hn−u−s

[
X( 1

M −Bτ )
]
hu[−X]

(
(−1)u+s−2

eu+s−2

[
MBτ − 1

]
+ χ(u+ s = 1)

)

=
n∑

v=s

hn−v

[
X( 1

M −Bτ )
]
hv−s[−X]

(
hv−2

[
1−MBτ

]
+ χ(v = 1)

)
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Using this in 2.17 gives

C
∗
aθrh

∗
n[X] − χ(a = 1)θrh

∗
n−1[X] =

r∑

k=0

hr−k[
1
M ](−1)k−1

n∑

s=a

t
s−1

hs−a[− X
1−t ] ×

×
∑

τ�k−1

1

wτ

n∑

v=s

hn−v

[
X( 1

M −Bτ )
]
hv−s[−X]

(
hv−2

[
1−MBτ

]
+ χ(v = 1)

)

Since there are no partitions of k − 1 for k = 0 we make the change of variable k→k + 1 and obtain

C
∗
aθrh

∗
n[X] − χ(a = 1)θrh

∗
n−1[X] =

r−1∑

k=0

hr−1−k[
1
M ](−1)k

n∑

s=a

t
s−1

hs−a[− X
1−t ] ×

×
∑

τ�k

1

wτ

n∑

v=s

hn−v

[
X( 1

M −Bτ )
]
hv−s[−X]

(
hv−2

[
1−MBτ

]
+ χ(v = 1)

) 2.18

Now the term multiplying χ(v = 1) on the right hand side is

r−1∑

k=0

hr−1−k[
1
M ](−1)k

n∑

s=a

t
s−1

hs−a[− X
1−t ]

∑

τ�k

1

wτ

n∑

v=s

hn−v

[
X( 1

M −Bτ )
]
hv−s[−X]

Now v = 1 forces s = 1 which in turn forces a = 1. So this term reduces to

r−1∑

k=0

hr−1−k[
1
M ](−1)k

∑

τ�k

1

wτ
hn−1

[
X( 1

M −Bτ )
]

which we recognize as θr−1h
∗
n−1[X]. Thus 2.18 reduces to

C
∗
aθrh

∗
n[X]−χ(a = 1)

(
θrh

∗
n−1[X] + θr−1h

∗
n−1[X]

)
=

r−1∑

k=0

hr−1−k[
1
M ](−1)k×

×
n∑

s=a

t
s−1

hs−a[− X
1−t ]

∑

τ�k

1

wτ

n∑

v=s

hn−v

[
X( 1

M −Bτ )
]
hv−s[−X]hv−2

[
1−MBτ

]
2.19

Calling this last factor LF we have

LF = t
a−1

n∑

s=a

n∑

v=s

hv−s[−X]hs−a[− tX
1−t ]

∑

τ�k

1

wτ
hn−v

[
X( 1

M −Bτ )
]
hv−2

[
1−MBτ

]

= t
a−1

n∑

v=a

v∑

s=a

hv−s[−X]hs−a[− tX
1−t ]

∑

τ�k

1

wτ
hn−v

[
X( 1

M −Bτ )
]
hv−2

[
1−MBτ

]

But making the substitution s− a = u we get

v∑

s=a

hv−s[−X]hs−a[− tX
1−t ] =

v−a∑

u=0

hv−a−u[−X]hu[− tX
1−t ] = hv−a[− X

1−t ]
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This gives

LF = t
a−1

n∑

v=a

hv−a[− X
1−t ]

∑

τ�k

1

wτ
hn−v

[
X( 1

M −Bτ )
]
hv−2

[
1−MBτ

]

and 2.19 becomes

C
∗
aθrh

∗
n[X]−χ(a = 1)

(
θrh

∗
n−1[X] + θr−1h

∗
n−1[X]

)
=

= t
a−1

r−1∑

k=0

hr−1−k[
1
M ](−1)k

n∑

v=a

hv−a[− X
1−t ]

∑

τ�k

1

wτ
hn−v

[
X( 1

M −Bτ )
]
hv−2

[
1−MBτ

]

and a look at 2.11 reveals that this last expression is none other than t
a−1

B
∗
a−2θr−1h

∗
n−2[X]. In other words

we have proved the identity

C
∗
aθrh

∗
n[X] = t

a−1
B

∗
a−2θr−1h

∗
n−2[X] + χ(a = 1)

(
θrh

∗
n−1[X] + θr−1h

∗
n−1[X]

)

and our proof of Theorem I is thus complete.

3. Combinatorial Consequences
Let us denote by PFp1,p2,...,pk

(r), for 0 < r < n, the collection of parking functions with composition

(p1, p2, . . . , pk) |= n and diagonal word a shuffle of 12 · · · r with r + 1 · · ·n. In symbols

PFp1,p2,...,pk
(r) =

{
PF∈PFn : p(PF )=(p1,p2,...,pk) & σ(PF )∈12···r∪∪ r+1···n }

and set

Π(p1,p2,...,pk)(r; q, t) =
∑

PF∈PFp1,p2,...,pk
(r)

t
area(PF )

q
dinv(PF ) 3.1

Our basic goal in this section is to prove the identity in I.9 which can be written as

Π(p1,p2,...,pk)(r; q, t) =
〈
∇Cp1

Cp2
· · ·Cpk

1 , hrhn−r

〉
. 3.2

Our plan is to verify that both sides satisfy the same recursion and that they are equal for all the base cases.

Now we proved (Theorem I.1) that the right hand side satisfies
〈
∇Cp1

Cp2
· · ·Cpk

1 , hrhn−r

〉
= t

p1−1
〈
∇Bp1−2Cp2

· · ·Cpk
1 , hr−1hn−1−r

〉
+

+ χ(p1 = 1)
(〈
∇Cp2

· · ·Cpk
1 , hrhn−1−r

〉
+

〈
∇Cp2

· · ·Cpk
1 , hr−1hn−r

)〉 3.3

To extract information from this recursion i we need to rewrite it in a combinatorially more revealing form.

Proposition 1.4 was included precisely for this purpose. In fact, the Haglund-Morse-Zabrocki conjectures

suggest that the operator Bp1−2 in the expression

Bp1−2Cp2
· · ·Cpk

1 3.4

must be moved to the right passed all operators Cpi
to act on 1. This requires using 1.6, but only for b ≥ 1

and a ≥ −1. This reduces it to the following two cases

a) BaCb = qCbBa (for a ≥ 0 & b ≥ 1)

b) B−1C1 = qC1B−1 + I (for a = −1 & b = 1)
3.5

with “I” the identity operator.
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We are thus led to the following version of 3.3.

Proposition 3.1
The right hand side of 3.2 satisfies the following recursions

a) (when p1 > 1)
〈
∇Cp1

Cp2
· · ·Cpk

1 , hrhn−r

〉
= t

p1−1
q
k−1

〈
∇Cp2

· · ·Cpk
Bp1−21 , hr−1hn−1−r

〉

b) (when p1 = 1) 3.6
〈
∇C1Cp2

· · ·Cpk
1 , hrhn−r

〉
=

〈
∇Cp2

· · ·Cpk
1 , hrhn−1−r + hr−1hn−r

〉
+

+ (q − 1)
k∑

i=2

(pi=1)
q
i−2

〈
∇Cp2 · · · · · ·Cpk

1 , hr−1hn−1−r

〉

Proof
Note that when p1 > 1 then p1 − 2 ≥ 0 and since all parts of a composition are ≥ 1 we can use 3.5

a) k − 1 times and immediately obtain 3.6 a) from 3.3. Next note that for p1 = 1 we need to move B−1

passed all Cpi
in the expression

B−1Cp2 · · ·Cpk
1

To see how 3.6 b) comes out of this operation we need only work it out in a special case. Let us take k = 4.

This given, we have, by repeated uses of 3.5

B−1Cp2
Cp3

Cp4
1 = qCp2

B−1Cp3
Cp4

1 + χ(p2 = 1)(q − 1)Cp3
Cp4

1

= q
2
Cp2Cp3B−1Cp41 + χ(p3 = 1)q(q − 1)Cp2Cp41+

+ χ(p2 = 1)(q − 1)Cp3
Cp4

1

= q
2
Cp2Cp3Cp4B−11 + χ(p4 = 1)q2(q − 1)Cp2Cp31

χ(p3 = 1)q(q − 1)Cp2
Cp4

1+

+ χ(p2 = 1)(q − 1)Cp3Cp41

But the first term vanishes, since the operator B−a decreases degrees by a, and we get that

〈
∇B−1Cp2

Cp3
Cp4

1 , hrhn−r

〉
= (q − 1)

4∑

i=2

(pi=1)
q
i−2

〈
∇Cp2

· · · · · ·Cpk
1 , hr−1hn−1−r

〉

Of course we can complete the proof of 3.6 b) by an induction argument, but it wouldn’t add anything to

what we have just seen.

Now it was shown in [9] that

Ba1 =
∑

z|=a

Cz1Cz2 · · ·Czl(r)1 3.7

where “l(z)” denotes the length of the composition z.

This given, by combining Proposition 3.1 and 3.7 we obtain
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Theorem 3.1
The two sides of 3.2 satisfy the same recursion if for all (p1, p2, . . . , pk) |= n, and 0 < r < n

a) (when p1 > 1)

Π(p1,p2,...,pk)(r; q, t)
〉
= t

p1−1
q
k−1

∑

z|=p1−2

Π(p2,...,pk,z1,z2,...,zl(z))(r − 1; q, t)

b) (when p1 = 1) 3.8

Π1,p2,...,pk)(r; q, t)
〉
= Π(p2,...,pk)(r; q, t) + Π(p2,...,pk)(r − 1; q, t)+

+ (q − 1)

k∑

i=2

(pi=1)
q
i−2Π

(p2,..., ···pk)
(r − 1; q, t)

To verify these two identities we need some observations. To begin, for a PF ∈ PFp1,p2,...,pk
(r),

it will be convenient to refer to 1, 2, · · · r as the “small cars” and to r + 1, . . . , n as “big cars”. Now the

condition that σ(PF ) is a shuffle of increasing small cars with increasing big cars forces small cars as well as

big cars to be increasing from higher to lower diagonals and from right to left along diagonals. Thus there

will never be a small car on top of a small car nor a big car on top of a big car. This implies that the Dyck

paths supporting our parking functions will necessarily have only columns of NORTH steps of length at most

2. For the same reason, primary diagonal inversions will occur only when a small car is to the left of a big

car in the same diagonal. Likewise a secondary diagonal inversion occurs only when a big casr is to the left

of a small car in the adjacent lower diagonal.

This given, it will be convenient to represent a PF ∈ PFp1,p2,...,pk
(r) by the “reduced ” tableau

obtained by replacing all the small cars by a “1” and all big cars by a “2”. Clearly, to recover PF from such

a tableau we need only replace all the “1′s” by 1, 2, . . . , r and all the “1′s” by r + 1, . . . , n proceeding by

diagonals, from the highest to the lowest and within diagonals from right to left.

More precisely, we will work directly with the corresponding two-line array viewed as a sequence of

columns which we will call “dominos ” and refer to it as “dom(PF )”.

For instance on the left, in the display below, we have a PF ∈ PF6,3,1(5). We purposely depicted

the big cars 6, 7, 8, 9, 10 in bigger size than the small cars 1, 2, 3, 4, 5. On the right we have its reduced tableau

with the adjacent column of diagonal numbers. On the bottom we display dom(PF ).

=⇒ 3.9

3.10
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It may be good to say a few words on the manner in which the parking functions of a family

PFp1,p2,...,pk
(r) can be constructed. First, we create all the Dyck paths which hit the diagonal according to

the composition (p1, p2, . . . , pk) and have no more than min(r, n−r) columns of length two and all remaining

columns of length one. Then, for each of these Dyck paths, we fill the lattice cells adjacent to its columns of

length two with a 1 below a 2 then place, along the columns of length one, the remaining r −min(r, n− r)

1′s and n− r −min(r, n− r) 2′s in all possible ways.

Now that we are familiarized with these parking functions we can proceed to establish the identities

in 3.8. To verify 3.8 a) we need only construct a bijection

Φ : PFp1,p2,...,pk
(r) ⇐⇒

⋃

z|=p1−2

PF (p2,...,pk,z1,z2,...,zl(z))(r − 1) 3.10

such that

area(PF ) = p1 − 1 + area(Φ(PF )) and dinv(PF ) = k − 1 + dinv(Φ(PF )) 3.11

The combinatorial interpretation of these equalities is very suggestive

• some NORTH steps of the supporting Dyck path must be shifted to the right to cause a loss of area

of p1 − 1.

• Note that p1 > 1 forces a PF ∈ PFp1,p2,...,pk
(r) to start with a column of length 2. If we could

remove this column we will cause a loss of one diagonal inversion for each of the remaining cars in

the main diagonal, thereby satisfying the required dinv loss of k − 1.

Led by these two observations and the experience gained in previous work [5] we construct the map Φ as

follows .

Given a PF ∈ PFp1,p2,...pk
(r) with p1 > 1, we apply to dom(PF ) the following 4 step procedure,

and then let Φ(PF ) be the parking function corresponding to the resulting domino sequence.

Step 1 Cut dom(PF ) in two sections, the first containing its first p1 dominos and the second containing

the remaining n− p1.

Step 2 Remove from the first section the first two dominos.

Step 3 Decrease by 1 the diagonal number of every domino remaining in the first section.

Step 4 Cycle the processed first section to the end of the second section.

For instance in the display below, we have first the result of applying Steps 1,2,3 to the domino sequence in

3.10 and then below it we give the domino sequence resulting from Sep 4 together with the corresponding

reduced tableau and the image by Φ of the parking function in 3.9.

3.12

3.13
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To complete the proof of 3.8 a) we need to show that Φ is a bijection as stated in 3.10 and that the

requirements in 3.11 are satisfied.

To begin, Φ(PF ) is in PF (p2,...,pk,z1,z2,...,zl(z))(r − 1) with z = (z1, z2, . . . , zl(z) |= p1 − 2, since

decreasing by 1 the diagonal numbers in step 3 will cause the p1 − 2 last cars of Φ(PF ) to have a

supporting Dyck path that hits the diagonal according to a composition of p1 − 2. Conversely, given a

PF
′ ∈ PF (p2,...,pk,z1,z2,...,zl(z))(r − 1) we can reconstruct the domino sequence of the parking function PF

that Φ maps to PF
′, by applying the following sequence of steps to dom(PF

′)

Step -1 Cut dom(PF
′) into two successive sections of respective lengths p2 + · · ·+ pk and p1 − 2.

Step -2 Add 1 to the area numbers of the dominos in the second section.

Step -3 Cycle back the resulting second section to precede the first section.

Step -4 Prepend the resulting domino sequence by the pair [ 10 ][
2
1 ]

It is not difficult to see that this construction always yields a legitimate domino sequence of a reduced

parking function. For instance, note that since the second section of dom(PF
′) will necessarily start with

one [ 10 ] or [ 20 ], then after Step -2 these will become [ 11 ] or [ 21 ] thus we are always able to precede any one

of them by the pair [ 10 ][
2
1 ] and obtain a domino sequence of a parking function with diagonal composition

(p1, p2, . . . pk). This should make it clear that the Φ is a bijection as stated in 3.10.

It remains to verify the equalities in 3.11.

It is quite evident that the area equality is guaranteed by Step 3 together with the removal of the

domino [ 21 ] in Step 2. Moreover, the dinv equality holds true for two reasons:

• Every domino [10 ] following the pair [10 ][
2
1 ] in dom(PF ) used to contribute a secondary diagonal

inversion with the removed [ 21 ] and every [ 20 ] used to contribute a primary diagonal inversion with

the removed [10 ].

• No dinv gains or losses are produced by the reversal of the sequence orders in Step 4, since the

combination of Step 3 and Step 4 causes all the primary diagonal inversions to become secondary

and all the secondary to become primary as is it is illustrated in 3.9 and 3.13 by the corresponding

arrows in the reduced tableaux.

This completes our proof of 3.8 a).

Our next task is to verify 3.8 b). We will start with some auxiliary observations. Note first that for

any PF ∈ PFp1,p2,...,pk
(r) we may regard dom(PF ) as a sequence of sections of lengths p1, p2, . . . , pk. Each

section starts with a “small car” domino [ 10 ] or a “big car” domino [20 ]. We will call them “main diagonal

dominos ”. Note further that, for any pi = 1, its corresponding section reduces to a single main diagonal

domino. Conversely, each [ 20 ] occurring in dom(PF ) must be the sole element of a sections of length 1. This

is due to the fact each section of length greater than 1 must start with the pair of dominos [ 10 ][
2
1 ].

Now let PF ∈ PF1,p2,...,pk
(r) and let PF

′ be the parking function whose domino sequence is

dom(PF ) with its initial domino removed. Suppose first that dom(PF ) starts with a “big car” domino [20 ].

In that case we set Φ(PF ) = PF
′ and we are done, since PF

′ ∈ PFp2,...,pk
(r). Moreover, there is no area

loss, and since the removed [ 20 ] did not make any diagonal inversions with any of the succeeding dominos,

we have

t
area(PF )

q
dinv(PF ) = t

area(Φ(PF ))
q
dinv(Φ(PF )) 3.14
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Suppose next that dom(PF ) starts with a [ 10 ]. Note that in this case PF
′ ∈ PFp2,...,pk

(r − 1).

However, here the removed [ 10 ] used to make a diagonal inversion with every main diagonal domino [20 ] of

dom(PF ). Thus in this case we have

t
area(PF )

q
dinv(PF ) = t

area(PF ′)
q
dinv(PF ′)

q
m 3.15

where m gives the number of [ 20 ] in dom(PF ). We certainly cannot set Φ(PF ) = PF
′ here, since the weight

of PF
′ occurs with coefficient 1 in the second term on the right hand side of 3.8, b). It turns out that the

sum on the right hand side of 3.8 b) is precisely what is needed to perform the necessary correction when

m > 0. To see how this comes about, we start by writing q
m as the sum

q
m = 1 + (q − 1) + (q − 1)q + (q − 1)q2 + · · ·+ (q − 1)qm−1

,

so that 3.15 may be rewritten as

t
area(PF )

q
dinv(PF ) = t

area(PF ′)
q
dinv(PF ′) + (q − 1)

m∑

s=1

t
area(PF ′)

q
dinv(PF ′)+s−1

. 3.16

Now, suppose that the dominos [ 20 ] occur in dom(PF ) in positions

1 < i1 < i2 < · · · < im ≤ n 3.17

Note that, by one of our prior observations, we must have pis = 1 for all 1 ≤ s ≤ m. This given, let PF
(is)

be the parking function whose domino sequence is obtained by removing from dom(PF ) the initial domino

[ 10 ] together with the domino [ 20 ] in position is. Now since every main diagonal domino dom(PF ) located

between the two removed dominos used to make a primary or secondary diagonal inversion with one or the

other of the removed dominos, and the initial domino [ 10 ] made a diagonal inversion with the removed [20 ] as

well as all the big car dominos in position is+1, . . . , im, we derive that

dinv(PF
′) +m = dinv(PF ) = dinv(PF

(is)) + is − 2 + 1 + m− s

or better

dinv(PF
′) + s− 1 = dinv(PF ) = dinv(PF

(is)) + is − 2

which allows us to rewrite 3.6 in the suggestive form

t
area(PF )

q
dinv(PF ) = t

area(PF ′)
q
dinv(PF ′) + (q − 1)

m∑

s=1

q
is−2

t
area(PF (is))

q
dinv(PF (is)) 3.16

Let us now set for any PF ∈ PF1,p2,...,pk
(r)

Φ(PF ) =






PF
′ if dom(PF ) starts with a [ 20 ]

(
PF

′
, PF

(i1), PF
(i2) . . . , PF

(im)
)

if dom(PF ) starts with a [ 10 ]
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and note that this defines a bijective map of PF1,p2,...,pk
(r) onto a disjoint family of subsets covering the

union

PFp2,...,pk
(r)

⋃
PFp2,...,pk

(r − 1)
⋃

fi=1

PF
(p2,..., .,...pk)

(r − 1)

Indeed this map is onto since

(1) if PF
′ ∈ PFp2,...,pk

(r) then it is the image by Φ of the PF whose domino sequence is obtained by

prepending dom(PF
′) by a [ 20 ]

(2) if PF
′ ∈ PFp2,...,pk

(r−1) then it is in the image by Φ of the PF whose domino sequence is obtained

by prepending dom(PF
′) by a [ 10 ]

(3) if PF
(i) ∈ PF

(p2,..., ,...pk)
(r− 1) with pi = 1 then it is in the image by Φ of the PF whose domino

sequence is obtained by prepending dom(PF
(i)) by a [ 10 ] and inserting a [ 20 ] in position i.

This given, the identity in 3.8 b) is simply obtained by summing 3.16 over all PF ∈ PF1,p2,...,pk
(r). This

completes our proof that the two sides of 3.2 satisfy the same recursion.

We are left to verify the equality in the base cases. To this end note that since at each use of the

recursion one or more of the following happens

• r is decreased.

• the composition p is getting finer,

• the number of parts of p decreases.

From the beginning we have required that 0 < r < n, simply because when r = 0 or r = n the family

PFp1,p2,...,pk
(r) reduces to a triviality. In fact, if there are no small cars, or no big cars, the family is empty

unless p reduces to a string of 1′s and if that happens then there is only one parking function with no area

and no dinv. Thus the polynomial Πp1,p2,...,pk
(r) either vanishes or it is equal to 1. This not withstanding,

the recursion forces us to include all the degenerate cases. Omitting some trivial cases in which both the

combinatorial side as well as the symmetric function side are easily shown to vanish. The only significant

basic cases are when p reduces to a string of 1′s and 0 < r < n. In this case the family PF1n(r) consists of

all the parking functions obtained by placing along the main diagonal and from right to left all the shuffles

of 12 · · · r with r + 1 · · ·n. In this case there is no area and the dinv statistic reduces to an inversion count.

The corresponding polynomial then is none other than the q-binomial coefficient

Π1n(r) =
[
n

r

]

q
. 3.17

We need to show that the symmetric function side yields the same result. That is with n occurrences of C1

we have 〈
∇C1C1 · · ·C11 , hrnn−r

〉
=

[
n

r

]

q
3.18

Now we have shown (Proposition 1.3 ) that with n occurrences of C1 we have

∇C1C1 · · ·C11 = (q, q)nhn

[
X

1−q

]
3.19

However we obtain from the Cauchy identity that

〈
hn

[
X

1−q

]
, hµ[X]

〉
= hµ[

1
1−q ]
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which combined with 3.19 gives

〈
∇C1C1 · · ·C11 , hrhn−r

〉
=

(q, q)n
(q, q)r(q, q)n−r

3.20

which is another way of writing 3.18.

This completes our proof of I.9.

Remark 3.1
We must note that the very nature of case p1 = 1 of 3.8 makes it stand apart from any of the recur-

sions encountered in all previous parking function literature. For this reason there is no way we could have

discovered what to do with our parking functions in this degenerate case without help from the symmetric

function side. What is fascinating is that the intricacy of this case and the parking function magics that take

place, is none other but a side product of the commutativity relations afforded by the C and B operators. In

this context it is interesting to see that 3.8 b) tells us about q-binomial coefficients. In fact, when p reduces

to a string of 1′s, using 3.20 3.8 b) states that

(q, q)n
(q, q)r(q, q)n−r

=
(q, q)n−1

(q, q)r(q, q)n−1−r
+

(q, q)n−1

(q, q)r−1(q, q)n−r
+ (q − 1)

n∑

i=2

q
i−2 (q, q)n−2

(q, q)r−1(q, q)n−1−r
3.21

Since

(q − 1)
n∑

i=2

q
i−2 = (q − 1)

n−2∑

i=0

q
i = (q − 1)

1− q
n−1

1− q
= q

n−1 − 1

3.21 becomes

(q, q)n
(q, q)r(q, q)n−r

=
(q, q)n−1

(q, q)r(q, q)n−1−r
+

(q, q)n−1

(q, q)r−1(q, q)n−r
+ (qn−1 − 1)

(q, q)n−2

(q, q)r−1(q, q)n−1−r
3.22

or better

(q, q)n
(q, q)r(q, q)n−r

=
(q, q)n−1

(q, q)r(q, q)n−1−r
+

(q, q)n−1

(q, q)r−1(q, q)n−r
+

−(1− q
n−r)(q, q)n−1

(q, q)r−1(q, q)n−r

which is just another way of writing the classical recursion

(q, q)n
(q, q)r(q, q)n−r

=
(q, q)n−1

(q, q)r(q, q)n−1−r
+ q

n−r (q, q)n−1

(q, q)r−1(q, q)n−r

A fact that bring us to view these ramifications of the shuffle conjecture as a parking function

versions of q-binomial identities.
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