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ABSTRACT. In a recent work Jim Haglund, Jennifer Morse and Mike Zabrocki proved a variety of identities

involving Hall-Littlewood symmetric functions indexed by compositions. When they applied ∇ to these

symmetric functions the resulting identities and computer data led them to some truly remarkable refinements

of the shuffle conjecture. We prove here the symmetric function side of a recursion which combined with

a recent parking function recursion of Angela Hicks [18] settles some some special cases of the Haglund-

Morse-Zabrocki conjectures. Our main result of a compositional q, t-Catalan and Schröder theorem yields

as a consequence surprisingly simple new proofs of the original q, t-Catalan and Schröder results.

Introduction
In this writing it is convenient to represent parking functions in the n× n lattice square as two line

arrays

PF =

[
v1 v2 · · · vn
u1 u2 · · · un

]
I.1

with u1, u2, . . . , un integers satisfying

u1 = 0 and 0 ≤ ui ≤ ui−1 + 1 I.2

and V = (v1, v2, . . . , vn) a permutation in Sn satisfying

ui = ui−1 + 1 =⇒ vi > vi−1 . I.3

Here and after, we will denote by σ(PF ) the permutation obtained by successive right to left readings of the

components of the vector V = (v1, v2, . . . , vn) according to decreasing values of u1, u2, . . . , un. More precisely

if k = max{ui : 1 ≤ i ≤ n} we read first the vi that are above k in I.1, then those that above k − 1. etc . . .

ending with the vi that are above 0. We will here and after refer to σ(PF ) as the diagonal permutation of

PF . It will also be convenient to let ides(PF ) denote the descent set of the inverse of σ(PF ).

This given, each parking function is assigned the weight

w(PF ) = tarea(PF )qdinv(PF )Qides(PF )[X] I.4

where for S ⊆ {1, 2, · · · , n− 1}, QS [X] denotes the corresponding Gessel [12] fundamental quasi-symmetric

function,

area(PF ) =

n∑
i=1

ui I.5
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and

dinv(PF ) =
∑

1≤i<j≤n

χ(ui = uj & vi < vj) +
∑

1≤i<j≤n

χ(ui = uj + 1 & vi > vj) . I.6

Parking functions are endowed by a colorful history and a jargon (see for instance [14]) that is very

helpful in dealing with them combinatorially as well as analytically. For us it is sufficient to be able to

translate properties of the two line array in I.1 to visual properties of the corresponding tableau. A single

example of this correspondence should be sufficient for our purposes.

In Figure 1 we have a parking function as it is usually depicted on the right together with the

corresponding vector U = (u1, u2, . . . , un) in the bottom row and its corresponding vector V = (v1, v2, . . . , vn)

in the top row of the array.

The diagonal of shaded cells is usually referred to as main diagonal (or 0-diagonal) of PF . The numbers

in the lattice cells are the cars. The path along whose vertical steps we have set the cars is the Dyck path

supporting PF . This given, the components of U = (u1, u2, . . . , un) are none other than the orders of the

diagonals containing the cars. In this case car 3 is in the third diagonal, 1 and 8 are in the second diagonal,

5, 7 and 6 are in the first diagonal and 2 and 4 are in the main diagonal. We have purposely listed the cars by

diagonals from right to left starting with the highest diagonal. This gives the diagonal permutation σ(PF ).

It is clear from this imagery, that the sum in I.5 gives the total number of cells between the supporting Dyck

path and the main diagonal. We also see that two cars in the same diagonal with the car on the left smaller

than the car on the right will contribute a unit to dinv(PF ). The same holds true when a car on the left

is bigger than a car on the right with the latter in the adjacent lower diagonal. It will be convenient to

think that the parking functions, with a given Dyck path D in the n× n lattice square, are constructed by

first placing circles along the of NORTH steps of D and then filling the circles with 1, 2, . . . , n in a column

increasing manner.

In the present development, an additional parameter plays a crucial role. This is the diagonal

composition of a parking function, which we denote by p(PF ). This is simply the composition which gives

the position of the zeros in the vector U = (u1, u2, . . . , un), or equivalently the lengths of the segments of

the main diagonal between successive hits of its Dyck path. In summary, for the present example we have

p(PF ) = (5, 3), area(PF ) = 10, dinv(PF ) = 4, σ(PF ) = 31857624, ides(PF ) = {2, 4, 6, 7}

yielding

w(PF ) = t10q4Q{2,4,6,7}[X].

Here and after, the vectors U and V in the two line representation will be also referred to as U(PF ) and

V (PF ). It will also be convenient to denote by PFn the collection of parking functions in the n× n lattice

square.

This given, we are now finally in a position to state the main result of this paper.

To begin we should note that the so called shuffle conjecture (see [14] or [15]) is simply the identity∑
PF∈PFn

w(PF ) = DHn[X; q, t] I.11
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where DHn[X; q, t] denotes the Frobenius characteristic of the Diagonal Harmonics polynomials. Now it was

conjectured in [6] and proved by Mark Haiman in [16] that we have

DHn[X; q, t] = ∇en

with ∇ is the symmetric function operator introduced in [2]. Thus, as a symmetric function identity, I.11

can be simply stated as ∑
PF∈PFn

w(PF ) = ∇en .

In particular setting

FU [X] =
∑

U(PF )=U

w(PF )

we have the decomposition

∇en =
∑
U

FU [X] . I.12

Since it can be shown that each FU [X] is an LLT polynomial and therefore it is Schur positive (see [1],[14]).

The shuffle conjecture suggests that each FU [X] should be the Frobenius characteristic of a bigraded sub-

module of the Diagonal Harmonics of Sn and I.12 corresponds to a direct sum decomposition of Diagonal

Harmonics. The identification of these submodules would be more accessible if we had an explicit expres-

sion for each FU [X] in terms of ∇. The Haglund-Morse-Zabrocki conjectures provide such expressions for

appropriate sums of the polynomials FU [X].

More precisely

Conjecture I (Haglund-Morse-Zabrocki [17])

For each composition p = (p1, p2, · · · , pk) we have

∇Cp1Cp2 · · ·Cpk 1 =
∑

PF∈PFn

w(PF )χ
(
p(PF ) = p

)
I.13

with Ca the operator that acts on a symmetric function F [X] according to the plethystic formula

CaF [X] = (− 1
q )a−1F

[
X − 1−1/q

z

]
Ω[zX]

∣∣∣
za
, I.14

Recall that a composition p is a refinement of a composition r = (r1, r2, . . . , rm) and we write p � r
if and only if p is a concatenation p = p(1), p(2), . . . , p(m) with p(i) a composition of ri. This given we can

state
Conjecture II (Haglund-Morse-Zabrocki [17])

For each composition r = (r1, r2, · · · , rm) |= m we have

∇Brm · · ·Br2Br11 =
∑
p�r

q
∑k

i=1
(k−i)l(p(i)) ∑

PF∈PFn

w(PF ) χ
(
p(PF ) = p

)
I.15

with Ba = ωB̃aω and

B̃aP [X] = P
[
X − 1−q

z

]
Ω[zX]

∣∣∣
za
. I.16
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Our main result here can be stated as follows

Theorem I.1
For all compositions p = (p1, p2, . . . , pk) and 1 ≤ r ≤ n we have

〈
∇Cp1Cp2 · · ·Cpk 1 , erhn−r

〉
=


tp1−1qk−1

〈
∇Cp2 · · ·CpkBp1−1 1 , er−1hn−r

〉
if p1 > 1

qk−1
〈
∇Cp2 · · ·CpkB0 1 , er−1hn−r

〉
+
〈
∇Cp2 · · ·Cpk 1 , erhn−1−r

〉
if p1 = 1

. I.17

In particular for r = n we obtain the following recursion

Corollary I.1〈
∇Cp1Cp2 · · ·Cpk 1 , en

〉
= tp1−1qk−1

〈
∇Cp2 · · ·CpkBp1−1 1 , en−1

〉
(for all p1 ≥ 1) .

These identities combined with two beautiful parking function bijections proved by Angela Hicks in

[18] yield the following combinatorial result.

Theorem I.2
For any composition p = (p1, p2, . . . , pk) and every 1 ≤ r ≤ n we have〈

∇Cp1Cp2 · · ·Cpk 1 , erhn−r
〉

=
∑

PF∈PFn(r)

tarea(PF )qdinv(PF )χ
(
p(PF ) = p

)
I.18

where PFn(r) denotes the collection of parking functions with diagonal permutation a shuffle of n(n− 1) · · · (n− r + 1)

and 123 · · · (n − r), or equivalently, the collection of parking functions with diagonal permutation a shuffle of

r · · · 321 and (r + 1) · · · (n− 1)n.

For a given subset S ⊆ {1, 2, . . . , n − 1} let ZS denote the skew Schur function whose standard

tableau words are the permutations with descent set S. It follows from a theorem of Gessel [12] that if

F [X] =
∑
σ∈Sn

cσ Qides(σ)[X]

is a symmetric function then 〈
F , ZS

〉
=

∑
σ∈Sn

cσχ
(
ides(σ) = S

)
.

Using this fact it is not difficult to show that the identities in I.18 are all special cases of Conjecture I.

It is also shown in [17] that ∑
p|=n

Cp1Cp2 · · ·Cpk 1 = en. I.19

In particular from I.18 and I.19 it follows that〈
∇en , erhn−r

〉
=

∑
PF∈PFn(r)

tarea(PF )qdinv(PF ). I.20
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This is the q, t-Catalan [4] result for r = n and the Schröder Theorem [13] for all the other values of r. In

fact, note that when σ(PF ) = n · · · 321 then all pairs of circles in the same diagonal contribute to dinv(PF )

and all pairs with the circle on the right in the adjacent lower diagonal contribute as well. Indeed, in the

first case their contents from left to right will be increasing and in the second case decreasing. This means

that when σ(PF ) = n · · · 321, I.6 reduces to

dinv(U) =
∑

1≤i<j≤n

χ(ui = uj) +
∑

1≤i<j≤n

χ(ui = uj + 1)

and this expression may be viewed as the “dinv” of the corresponding Dyck path. Thus in this case I.18

may be restated as

〈
∇Cp1Cp2 · · ·Cpk 1 , en

〉
=

∑
D∈Dn

tarea(D)qdinv(D)χ
(
p(D) = (p1, p2, . . . , pk)

)
I.21

where the sum is over all Dyck paths in the n × n lattice square which touch the main diagonal according

to p = (p1p2, . . . , pk).

When r < n we obtain a similar result where the sum is over Schröder paths. More precisely if we

denote by SCHn(d) the collection of Schröder paths with d diagonal steps I.17 may be restated as

〈
∇Cp1Cp2 · · ·Cpk , 1 , en−dhd

〉
=

∑
SCH∈SCHn(d)

tarea(SCH)qdinv(SCH)χ
(
p(SCH) = (p1, p2, . . . , pk)

)
I.22

This identity follows immediately from the second combinatorial interpretation of the right-hand side of I.17

in the case that σ(PF ) is restricted to be a shuffle of d · · · 321 and (d + 1)(d + 2) · · ·n. This follows from

a simple bijection given in [14] between parking functions with such a diagonal permutation and Schröder

paths with d diagonal steps, as illustrated in Figure 2 where the example σ(PF ) is a shuffle of 5678 and

4321.

In fact the column increasing condition together with the fact that 5, 6, 7, 8 are increasing, by de-

creasing diagonals and from right to left, forces 5, 6, 7, 8 to be on the top of their columns. This given the

bijection, in general, is simply to place a diagonal step across each of the increasing big numbers, as we have

done in the above display. Of course, in I.22 as well as in I.21, the area as well as the diagonal composition

are defined to be the same as in the original parking function.

The operators, Ca and Ba are both closely related to the Hall-Littlewood polynomials obtained by

setting t = 0 in the version of Macdonald polynomials H̃µ[X; q, t] introduced in [5]. In fact, it can be shown

that we have for any µ = (µ1, µ2, . . . , µk) ` n

Cµ1
Cµ2
· · ·Cµk 1 = (−1/q)nH̃µ′ [X; q, 0]

and

B̃µ1
B̃µ2
· · · B̃µk 1 = (q)eµH̃µ[X; 1/q, 0]

for a suitable exponent eµ.
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Our strategy, in the proof of Theorem I.2 is a standard one in this area of algebraic combinatorics.

We simply show that both sides of I.18 satisfy the same recursion and the same initial conditions. The

recursion for the left hand side is given by Theorem I.1. The bijections of Angela Hicks [18], constructed for

this purpose, give the recursion for the right hand side. This given, we are only left to verify the base cases.

As in the proofs of the q, t-Catalan and Schröder theorems the proof of I.17 is based on some identities

governing the Macdonald polynomials H̃µ[X; q, t] developed in [3] and [8]. We also use plethystic notation

throughout, in our manipulations of symmetric functions. However, in contrast with the arguments in [4]

and [13], where a variety of new and complex summation formulas had to be created, the arguments used

here are quite straightforward and use only identities that can be found in [3] and [8].

The contents of this paper are divided into two sections. In section 1 we introduce some notation,

including a brief introduction to plethystic notation and recall the basic identities of Macdonald Theory we

will use in section 2. In section 2. we prove Theorem I.1 and then complete the proof of Theorem I.2 .

Our proof of I.17 did not come together all by itself. The variety of identities and methods that

allowed us to converge to its present deceptive simplicity should be of interest to the practitioners of this

type of research. However, in order to keep our developments here as simple as possible these additional

findings will be the subject of the two forthcoming publications [10] and [11].
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1. A Macdonald Polynomial tool kit.
The space of symmetric polynomials will be denoted Λ. The subspace of homogeneous symmetric

polynomials of degree m will be denoted Λ=m. It will also convenient to let Λ≤m denote the subspace of

symmetric polynomials that are of degree ≤ m. We will seldom work with symmetric polynomials expressed

in terms of variables but rather express them in terms of one of the six classical symmetric function bases

(1) power {pµ}µ, (2) monomial {mµ}µ, (3) homogeneous {hµ}µ,

(4) elementary {eµ}µ, (5) forgotten {fµ}µ, and (6) Schur {sµ}µ .

We recall that the fundamental involution ω may be defined by setting for the power basis indexed

by µ = (µ1, µ2, . . . , µk) ` n
ωpµ = (−1)n−kpµ = (−1)|µ|−l(µ)pµ 1.1

where for any vector v = (v1, v2, · · · , vk) we set |v| =
∑k
i=1 vi and l(v) = k.

In dealing with symmetric function identities, specially with those arising in the Theory of Macdonald

Polynomials, we find it convenient and often indispensable to use plethystic notation. This device has a

straightforward definition which can be verbatim implemented in MAPLE of MATHEMATICA for computer

experimentation. We simply set for any expression E = E(t1, t2, . . .) and any power symmetric function pk

pk[E] = E( tk1 , t
k
2 , . . .). 1.2

This given, for any symmetric function F we set

F [E] = QF (p1, p2, . . .)
∣∣∣
pk→E( tk1 ,t

k
2 ,...)

1.3

where QF is the polynomial yielding the expansion of F in terms of the power basis. Note that in writing

E(t1, t2, . . .) we are tacitly assuming that t1, t2, t3, . . . are all the variables appearing in E and in writing

E(tk1 , t
k
2 , . . .) we intend that all the variables appearing in E have been raised to their kth power.

A paradoxical but necessary property of plethystic substitutions is that 1.1 requires

pk[−E] = −pk[E]. 1.5

This notwithstanding, we will still need to carry out ordinary changes of signs. To distinguish it from the

plethystic minus sign, we will carry out the ordinary sign change by means of a new variables ε which outside of

the plethystic bracket is simply replaced by−1. For instance, these conventions give forXk = x1+x2+· · ·+xn

pk[−εXn] = −εk
n∑
i=1

xki = (−1)k−1
n∑
i=1

xki .

In particular we get for X = x1 + x2 + x3 + · · ·

ωpk[X] = pk[−εX].

Thus for any symmetric function F ∈ Λ and any expression E we have

ωF [E] = F [−εE] . 1.6
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In particular, if F ∈ Λ=k we may also rewrite this as

F [−E] = (−1)kωF [E]. 1.7

The formal power series

Ω = exp
(∑
k≥1

pk
k

)
combined with plethysic substitutions will provide a powerful way of dealing with the many generating

functions occurring in our manipulations.

Using 1.6, we can define in one step the operator Ba by setting, for every polynomial P [X]

BaP [X] = P
[
X + ε 1−qz

]
Ω[−εzX]

∣∣∣
za
. 1.8

Indeed since by definition Ba = ωB̃aω, formula I.16 gives

BaP [X] = ωB̃aP [−εX] = ωP
[
− εX + ε 1−qz

]
Ω[zX]

∣∣∣
za

= P
[
X + ε 1−qz

]
Ω[−εzX]

∣∣∣
za
.

Here and after we will use 1.8 to compute the action of Ba.

For a given expression E we will set

Ω[E] = exp
(∑
k≥1

pk[E]

k

)
and since for any two expressions A,B 1.1 gives

pk[A+B] = pk[A] + pk[B] . 1.9

We derive from this the fundamental formula

Ω[A+B] = Ω[A] Ω[B] . 1.10

In particular when A =
∑n
i=1 ai and B =

∑m
j=1 bj we get

Ω[tA− tB] =

∏m
j=1(1− tbj)∏n
i=1(1− tai)

. 1.11

Clearly, for any two expressions A,B we can also view Ω[t(A − B)] as the generating functions of the

homogeneous symmetric functions plethystically evaluated at A−B

Ω[t(A−B)] =
∑
m≥1

tmhm[A−B] .

In particular, by equating coefficients of tm on both sides of 1.11, 1.9 gives (using 1.8)

hm[A−B] =

m∑
r=0

hm−r[A]hr[−B] =

m∑
r=0

hm−r[A](−1)rer[B] 1.12

which is an identity that will play a crucial role in many of our calculations.
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To present our Macdonald polynomial kit, it is convenient to identify partitions with their (french)

Ferrers diagram. Given a partition µ and a cell c ∈ µ, Macdonald introduces four parameters l = lµ(c),

l′ = l′µ(c), a = aµ(c) and a′ = a′µ(c) called leg, coleg, arm and coarm which give the number of lattice cells of

µ strictly NORTH, SOUTH, EAST and WEST of c, (see Figure 3). Following Macdonald we will set

n(µ) =
∑
c∈µ

lµ(c) =
∑
c∈µ

l′µ(c) =

l(µ)∑
i=1

(i− 1)µi.

Denoting by µ′ the conjugate of µ, the basic ingredients playing a role in the theory of Macdonald

polynomials are

Tµ = tn(µ)qn(µ
′) , Bµ(q, t) =

∑
c∈µ

tl
′
µ(c)qa

′
µ(c) , Πµ(q, t) =

∏
c∈µ;c6=(0,0)

(1− tl
′
µ(c)qa

′
µ(c)),

wµ(q, t) =
∏
c∈µ

(qaµ(c) − tlµ(c)+1)(tlµ(c) − qaµ(c)+1),
1.13

together with a deformation of the Hall scalar product, which we call the ∗-scalar product, defined by setting

for the power basis 〈
pλ , pµ

〉
∗ = (−1)|µ|−l(µ)

∏
i

(1− tµi)(1− qµi) zµ χ(λ = µ), 1.14

where zµ gives the order of the stabilizer of a permutation with cycle structure µ.

This given, the modified Macdonald Polynomials we will deal with here are the unique symmetric

function basis
{
H̃µ[X; q, t]

}
µ

which satisfies the orthogonality condition〈
H̃λ , H̃µ

〉
∗ = χ(λ = µ)wµ(q, t) 1.15

and a triangularity condition with respect to the basis sλ[X/(t− 1)].

The ∗-scalar product, is simply related to the ordinary Hall scalar product by setting for all pairs

of symmetric functions f, g 〈
f , g

〉
∗ =

〈
f , ωφg

〉
1.16

where it has been customary to let φ be the operator defined by setting for any symmetric function f

φ f [X] = f [MX] 1.17

with

M = (1− t)(1− q) 1.18

Note that the inverse of φ is usually written in the form

f∗[X] = f [X/M ] . 1.19

In particular we also have for all symmetric functions f, g〈
f , g

〉
=
〈
f, ωg∗

〉
∗ . 1.20
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The orthogonality relations in 1.15 yield the Cauchy identity for our Macdonald polynomials in the form

Ω
[
−εXYM

]
=
∑
µ

H̃µ[X]H̃µ[Y ]

wµ
1.21

which restricted to its homogeneous component of degree n in X and Y reduces to

en
[
XY
M

]
=
∑
µ`n

H̃µ[X]H̃µ[Y ]

wµ
. 1.22

In fact, from the definition in 1.14 it follows that the reproducing kernel for the ∗-scalar product is given the

the sum ∑
µ

(−1)|µ|−l(µ)
pµ[X]pµ[Y ]

pµ[M ]
=
∑
µ

(−1)|µ|−l(µ)pµ[XYM ] = Ω
[
− εXYM

]
since the left hand side of this identity must be equal to the right hand side of 1.21 the equality in 1.21 must

hold true as well. It will be convenient here and in the sequel to use the short hand notation

Ω̃
[
XY
M

]
= Ω

[
− εXYM

]
.

A crucial tool which provides many of the transformations we will need in the sequel is the so called the

Macdonald-Koorwinder “reciprocity” formula (see [19] or [8]). For our version of the Macdonald polynomials

this formula can be written in the following concise form

H̃α[1 + uDβ ]∏
c∈α(1− u tl′qa′)

=
H̃β [1 + uDα]∏
c∈β(1− u tl′qa′)

(for all pairs α, β) 1.23

where for convenience we have set

Dα(q, t) = MBα(q, t)− 1 . 1.24

We will use here several special evaluations of 1.23, To begin, canceling the common factor (1 − u) out of

the denominators on both sides of 1.23 then setting u = 1 gives

H̃α[MBβ ]

Πα
=

H̃β [MBα]

Πβ
(for all pairs α, β) . 1.25

On the other hand replacing u by 1/u and letting u = 0 in 1.23 gives

(−1)|α|
H̃α[Dβ ]

Tα
= (−1)|β|

H̃β [Dα]

Tβ
(for all pairs α, β) . 1.26

Since for β the empty partition we can take H̃β = 1 and Dβ = −1, 1.23 in this case reduces to

H̃α[1− u ] =
∏
c∈α

(1− utl
′
qa
′
) = (1− u)

n−1∑
r=0

(−u)rer[Bµ − 1] . 1.27
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This identity yields the coefficients of hook Schur functions in the expansion

H̃µ[X; q, t] =
∑
λ`|µ|

sµ[X]K̃λµ(q, t) . 1.28

In fact an application of 1.12 with A = X and B = uX gives

sµ[1− u] =

{
(−u)r(1− u) if µ = (n− r, 1r)

0 otherwise

. 1.29

Thus 1.28, with X = 1− u, combined with 1.27 gives for µ ` n〈
H̃µ , s(n−r,1r)

〉
= er[Bµ − 1] 1.30

and the identity erhn−r = s(n−r,1r) + s(n−r−1,1r−1) gives〈
H̃µ , erhn−r

〉
= er[Bµ]. 1.31

The case β = (1) of 1.25 is also significant in that it reduces to the identity

H̃α[M ] = MBαΠα. 1.32

Another crucial ingredient in our manipulations is the symmetric function operator ∇ which is

defined by setting for the Macdonald basis

∇H̃µ(X; q, t) = TµH̃µ(X; q, t) . 1.33

It was conjectured in [6] and proved in [16] that the bigraded Frobenius characteristic of the diagonal

Harmonics of Sn is given by the symmetric function

DHn[X; q, t] =
∑
µ`n

TµH̃µ(X; q, t)Bµ(q, t)Πµ(q, t)(1− t)(1− q)
wµ(q, t)

. 1.34

Surprisingly the intricate rational function on the right hand side is none other than ∇en. To see this we

simply combine the relation in 1.32 with the degree n restricted Cauchy formula 1.22, obtaining

en[X] = en
[
XM
M

]
=
∑
µ`n

H̃µ[X]MBµΠµ

wµ
. 1.35

This discovery is precisely what led to the introduction of ∇ in the first place.

Our final ingredients we need, to carry out our proofs, are the coefficients dµν and cµν occurring in

the Pieri formulas

a) e1H̃ν =
∑
µ←ν

dµνH̃µ , b) e⊥1 H̃µ =
∑
ν→µ

cµνH̃ν , 1.36
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and their corresponding summation formulas (see [9],[3] ) (†)

∑
ν→µ

cµν(q, t) (Tµ/Tν)k =


tq
M hk+1

[
Dµ(q, t)/tq

]
if k ≥ 1 ,

Bµ(q, t) if k = 0 .
1.37

∑
µ←ν

dµν(q, t) (Tµ/Tν)k =

{
(−1)k−1 ek−1

[
Dν(q, t)

]
if k ≥ 1 ,

1 if k = 0 .

1.38

Here ν→µ simply means that the sum is over ν’s obtained from µ by removing a corner cell and µ←ν means

that the sum is over µ’s obtained from ν by adding a corner cell.

It will be useful to know that these two Pieri coefficients are related by the identity

dµν = Mcµν
wν
wµ

. 1.39

2. Hall-Littlewood operators magics.

The proof of the q, t-Catalan result in [4] hinged on the discovery of the symmetric functions

En,k[X; q] defined through the plethystic identity

en
[
X 1−x

1−q
]

=

n∑
k=1

(x, q)k
(q, q)k

En,k[X; q] 2.1

where as customary we have set

(x, q)k = (1− x)(1− xq) · · · (1− xqk−1) . 2.2

These symmetric functions played a crucial role also in the proof of the q, t-Schröder Theorem [13]. Here

they play a minor role since their contribution to the subject seems to be superseded by the Hall-Littlewood

operators, as it is quite evident from the following beautiful identity.

Proposition 2.1
For every integer n ≥ 1 we have

q δq en
[
X 1−x

1−q
]

=

n∑
a=1

Caen−a
[
X 1−x

1−q
]

2.3

where δq is the operator which acts on a polynomial P (x) according to the formula

δq P (x) =
P (x)− P (x/q)

x
. 2.4

In particular it follows that the En,k can be obtained from the recursion

En,k =

n∑
a=1

CaEn−a,k−1 . 2.5

(†) Formula 1.37 is proved in [9] and a proof of 1.38 is given in [3]
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Proof
To prove 2.3 we start by evaluating the left hand side of 2.3 using 2.4. This gives

qδq en
[
X 1−x

1−q
]

= q
x

(
en
[
X 1−x

1−q
]
− en

[
X 1−x/q

1−q
])

. 2.6

Note next that we have

en
[
X 1−x/q

1−q
]

= en
[
X 1−x

1−q + xX 1−1/q
1−q

]
= en

[
X 1−x

1−q −
x
qX
]

= en
[
X 1−x

1−q
]

+

n∑
a=1

en−a
[
X 1−x

1−q
]
(−xq )aha[X] .

Thus 2.6 reduces to

q δq en
[
X 1−x

1−q
]

=

n∑
a=1

en−a
[
X 1−x

1−q
]
(−xq )a−1ha[X] . 2.7

To work on the right hand side of 2.3 we use I.14 to get

(−q)a−1Caen−a
[
X 1−x

1−q
]

= en−a
[(
X − 1−1/q

z

)
1−x
1−q
]
Ω[zX]za

= en−a
[
X 1−x

1−q
]
ha[X] +

n−a∑
s=1

en−a−s
[
X 1−x

1−q
]
es
[
− (1−x)(1−1/q)

1−q
]
hs+a[X]

= en−a
[
X 1−x

1−q
]
ha[X] +

n−a∑
s=1

en−a−s
[
X 1−x

1−q
]
es
[
1−x
q

]
hs+a[X] . 2.8

.

But for s ≥ 1 we have

es[
1−x
q ] = 1

qs (−x)s−1(1− x) = 1
q (1− x)(−xq )s−1

and 2.8 becomes

(−q)a−1Caen−a
[
X 1−x

1−q
]

= en−a
[
X 1−x

1−q
]
ha[X] + 1

q (1− x)

n−a∑
s=1

en−a−s
[
X 1−x

1−q
]
(−xq )s−1hs+a[X] .

Using this, the right and side of 2.3 becomes

n∑
a=1

Caen−a
[
X 1−x

1−q
]

=

n∑
a=1

en−a
[
X 1−x

1−q
]
(− 1

q )a−1ha[X] + 1
q (1− x)

n∑
a=1

n−a∑
s=1

en−a−s
[
X 1−x

1−q
]
(− 1

q )a−1(−xq )s−1hs+a[X]

=

n∑
a=1

en−a
[
X 1−x

1−q
]
(− 1

q )a−1ha[X] − (1− x)

n∑
a=1

n−a∑
s=1

en−a−s
[
X 1−x

1−q
]
(− 1

q )a+s−1xs−1hs+a[X]

=

n∑
a=1

en−a
[
X 1−x

1−q
]
(− 1

q )a−1ha[X] − (1− x)

n∑
a=1

n∑
s=a+1

en−s
[
X 1−x

1−q
]
(− 1

q )s−1xs−a−1hs[X]

=

n∑
a=1

en−a
[
X 1−x

1−q
]
(− 1

q )a−1ha[X] − (1− x)

n∑
s=1

en−s
[
X 1−x

1−q
]
(− 1

q )s−1hs[X]

s−1∑
a=1

xs−a−1

=

n∑
a=1

en−a
[
X 1−x

1−q
]
(− 1

q )a−1ha[X] −
n∑
s=1

en−s
[
X 1−x

1−q
]
(− 1

q )s−1hs[X](1− xs−1)

=

n∑
s=1

en−s
[
X 1−x

1−q
]
(−xq )s−1hs[X] = q δq en

[
X 1−x

1−q
]
. (by 2.6)
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This completes our argument.

The identity in 2.3 has the following important corollary.

Theorem 2.1(Haglund-Morse-Zabrocki)

For all 1 ≤ k ≤ n we have

En,k =
∑

p|=n ; l(p)=k

Cp1Cp2 · · ·Cpk 1 2.9

en =
∑
p|=n

Cp1Cp2 · · ·Cpk 1 . 2.10

Proof
Setting x = q in 2.1 gives

en =

n∑
k=1

En,k . 2.10

Thus 2.10 follows from 2.9. On the other hand 2.9 itself is obtained by successive iterations of 2.5 together

with the initial conditions

En,1 = (−1/q)n−1hn[X] = Cn1 . 2.11

In fact, setting x = 1/q in 2.1 gives

(−1/q)nhn[X] = en
[
X 1−1/q

1−q
]

= 1−1/q
1−q En,1 = (−1/q)En,1 .

This proves the first equality in 2.11. The second equality follows from the definition in I.14

Remark 2.1
We should mention that the original proof of the identities in 2.9 and 2.10 used a full blown repertoire

of Macdonald polynomial identities. We gave this new proof since it reveals the intimate connections of the

En,k with the Ca operators and uses only elementary symmetric function identities.

For E1, E2, . . . , Ek given expressions and P [X] a symmetric polynomial we set

P (r1,r2,...,rk)[X] = P [X + E1u1 + E2u2 + · · ·+ Ekuk]
∣∣∣
u
r1
1 u

r2
2 ···u

rk
k

.

The important property is that if

Q(r1)[X] = P [X + E1u1]
∣∣∣
u
r1
1

then

Q(r1)[X + E2u2]
∣∣∣
u
r2
2

= P [X + E1u1 + E2u2]
∣∣∣
u
r1
1 u

r2
2

= P (r1,r2)[X] .

Proposition 2.2

(
qCbBa − BaCb

)
P [X] = (q − 1)(−1)a+b−1/qb−1 ×


0 if a+ b > 0
P [X] if a+ b = 0∑
r1+r2=−(a+b)P

r1,r2 [X] if a+ b < 0
2.12
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Proof
Using I.16 we get

(−q)b−1CbP [X] =

d∑
r1=0

P (r1)[X] 1
zr1

∑
m≥0

zmhm[X]
∣∣∣
zb

=

d∑
r1=0

P (r1)[X]hb+r1 [X]

and 1.8 gives

(−q)b−1BaCbP [X] =

d∑
r1=0

P (r1)
[
X + ε 1−qz2

]
hb+r1

[
X + ε 1−qz2

]
Ω[−εz2X]

∣∣∣
za2

=

d∑
r1,r2=0

P (r1,r2)( 1
z2

)r2
b+r1∑
s=0

hb+r1−s[X]hs
[
ε 1−qz2

]
Ω[−εz2X]

∣∣∣
za2

=

d∑
r1,r2=0

b+r1∑
s=0

P (r1,r2)hb+r1−s[X]hs
[
ε(1− q)

]
Ω[−εz2X]

∣∣∣
z
a+r2+s

2

=

d∑
r1,r2=0

b+r1∑
s=0

P (r1,r2)[X]hb+r1−s[X](−1)shs
[
(1− q)

]
ha+r2+s[−εX] .

Now note that 1.29 gives

hs
[
(1− q)

]
=

{
1 if s = 0
1− q if s > 0

.

We can thus write

(−q)b−1BaCbP [X] =

d∑
r1,r2=0

P (r1,r2)[X]hb+r1 [X]ha+r2 [−εX] +

+ (1− q)
d∑

r1,r2=0

b+r1∑
s=1

P (r1,r2)[X]hb+r1−s[X](−1)sha+r2+s[−εX]

and the change of summation index u = a+ r2 + s gives

(−q)b−1BaCbP [X] =

d∑
r1,r2=0

P (r1,r2)[X]hb+r1 [X]ha+r2 [−εX] +

+ (1− q)
d∑

r1,r2=0

a+b+r1+r2∑
u=a+r2+1

P (r1,r2)[X]ha+b+r1+r2−u[X](−1)u−a−r2hu[−εX] .

2.13

Similarly, we get

BaP [X] =

d∑
r2=0

P r2 [X]( 1
z2

)r2
∑
u≥0

zu2hu[−εz2X]
∣∣∣
za2

=

d∑
r2=0

P r2 [X]hr2+a[−εX] .
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Thus

(−q)b−1CbBaP [X] =

d∑
r2=0

P r2
[
X − 1−1/q

z

]
hr2+a

[
− ε
(
X − 1−1/q

z1

)]
Ω[z1X]

∣∣∣
zb1

=

d∑
r1,r2=0

P r1,r2 [X]( 1
z1

)r1
r2+a∑
s=0

hr2+a−s[−εX] ( 1
z1

)shs
[
ε(1− 1/q)

]
Ω[z1X]

∣∣∣
zb1

,

=

d∑
r1,r2=0

P r1,r2 [X]

r2+a∑
s=0

hr2+a−s[−εX] (−1)shs
[
1− 1/q

]
hr1+s+b[X] .

Note that now 1.29 gives

hs
[
(1− 1/q)

]
=

{
1 if s = 0
1− 1/q if s > 0

.

Thus

(−q)b−1CbBaP [X] =
(
1− (1− 1/q)

) d∑
r1,r2=0

P r1,r2 [X]hr2+a[−εX]hr1+b[X]

+
(
1− 1/q

) d∑
r1,r2=0

P r1,r2 [X]

r2+a∑
s=0

hr2+a−s[−εX] (−1)s hr1+s+b[X] .

and the change of summation index u = r2 + a− s gives

(−q)b−1CbBaP [X] =
1

q

d∑
r1,r2=0

P r1,r2 [X]hr2+a[−εX]hr1+b[X]

+
(
1− 1/q

) d∑
r1,r2=0

P r1,r2 [X]

a+r2∑
u=0

hu[−εX] (−1)r2+a−u ha+b+r1+r2−u[X] .

In summary, we get

(−q)b−1 qCbBaP [X] =

d∑
r1,r2=0

P r1,r2 [X]hr2+a[−εX]hr1+b[X]

+
(
q − 1

)
(−1)a

d∑
r1,r2=0

P r1,r2 [X]

a+r2∑
u=0

hu[−X] (−1)r2 ha+b+r1+r2−u[X] .

On the other hand 2.13 can also be written as

(−q)b−1BaCbP [X] =

d∑
r1,r2=0

P (r1,r2)[X]hr2+a[−εX]hr1+b[X] +

+ (−1)a(1− q)
d∑

r1,r2=0

a+b+r1+r2∑
u=a+r2+1

P (r1,r2)[X]ha+b+r1+r2−u[X](−1)r2hu[−X]
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and thus subtraction gives

(−q)b−1
(
qCbBa − BaCb

)
P [X] =

(
q − 1

)
(−1)a

d∑
r1,r2=0

P r1,r2 [X]

a+b+r1+r2∑
u=0

hu[−X] (−1)r2 ha+b+r1+r2−u[X]

=
(
q − 1

)
(−1)a

d∑
r1,r2=0

P r1,r2 [X](−1)r2 ha+b+r1+r2 [X −X] .

Carrying out the summations and using the definition of P r1,r2 [X] we finally obtain

(−q)b−1
(
qCbBa − BaCb

)
P [X] = (q − 1)(−1)a ×


0 if a+ b > 0
P [X] if a+ b = 0∑
r1+r2=−(a+b)P

r1,r2 [X] if a+ b < 0

which is easily seen to be 2.12, completing the proof.

In particular we have shown that

Theorem 2.2(Haglund-Morse-Zabrocki)

For all a+ b > 0, our Hall-Littlewood operators have the following commutativity property

BaCb = qCbBa . 2.14

Remark 2.2
The original proof of 2.14, although much shorter, used manipulations which we found difficult to

justify. Similar dubious manipulations occur throughout the literature involving Vertex operators. Our

efforts to put these manipulations on a solid foundation led to our forthcoming papers [10] and [11]. It will

be shown there that the partial fraction algorithm developed in [20] for the computation of constant terms,

provides a natural and solid foundation for dealing with compositions of Vertex operators. Moreover, it will

be shown in [11] how an application of this algorithm led us to the discovery of the Macdonald Polynomial

identity that plays a major role in our proof of Theorem I.1.

Theorem 2.2 allows us a first reduction in our path to Theorem I.1:

Proposition 2.3
The identity

〈
∇Cp1Cp2 · · ·Cpk 1 , erhn−r

〉
=


tp1−1qk−1

〈
∇Cp2 · · ·CpkBp1−1 1 , er−1hn−r

〉
if p1 > 1

qk−1
〈
∇Cp2 · · ·CpkB0 1 , er−1hn−r

〉
+
〈
∇Cp2 · · ·Cpk 1 , erhn−1−r

〉
if p1 = 1

2.15

is valid for all compositions p = (p1, p2, . . . , pk) and 1 ≤ r ≤ n if and only if we have

C∗a∇hr
[
X
M

]
en−r

[
X
M

]
=

 ta−1B∗a−1∇hr−1
[
X
M

]
en−r

[
X
M

]
if a > 1

B∗0∇hr−1
[
X
M

]
en−r

[
X
M

]
+ ∇hr

[
X
M

]
en−1−r

[
X
M

]
if a = 1

2.16

with C∗a and B∗b the operator adjoints of Ca and Bb with respect to the ∗-scalar product.
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Proof
Using 2.14 we can start by rewriting the first equality in 2.15 as〈

∇Cp1Cp2 · · ·Cpk 1 , erhn−r
〉

= tp1−1
〈
∇Bp1−1Cp2 · · ·Cpk 1 , er−1hn−r

〉
. 2.17

This given, note that since for (p2, p3, . . . , pk) a partition the expressions Cp2Cp3 · · ·Cpk 1 are essentially

Hall-Littlewood polynomials and therefore constitute a symmetric function basis, it follows that 2.17 holds

true of all (p2, p3, . . . , pk) if and only if for any a > 1 and any symmetric polynomial P [X] we have〈
∇CaP [X] , erhn−r

〉
= ta−1

〈
∇Ba−1P [X] , er−1hn−r

〉
.

Changing from the customary Hall scalar product to the ∗-scalar product using 1.20 gives〈
∇CaP [X] , h∗re

∗
n−r
〉
∗ = ta−1

〈
∇Ba−1P [X] , h∗r−1e

∗
n−r
〉
∗ . 2.18

But now the ∗-duality of the Macdonald bases H̃µ and H̃µ/wµ and the fact that ∇ is an eigen-operator for

both H̃µ and H̃µ/wµ yields that ∇ is ∗-self adjoint. This allows us to rewrite 2.18 in the form〈
P [X] , C∗a∇h∗re∗n−r

〉
∗ = ta−1

〈
P [X] , B∗a−1∇h∗r−1e∗n−r

〉
∗

and thus the equivalence of the first equalities in 2.15 and 2.16 follows from the arbitrariness of P [X]. The

equivalence of the second equalities is shown in exactly the same manner,

Our next result provides explicit expressions for both C∗a and B∗a−1.

Theorem 2.2
For all symmetric polynomials P [X] we have

B∗aP [X] = P
[
X + M

z

]
Ω
[−zX

1−t
]∣∣∣
z−a

2.19

and

C∗aP [X] = (−1q )a−1P
[
X − εM

z

]
Ω
[ −εzX
q(1−t)

]∣∣∣
z−a

. 2.20

Proof
Since Ω̃[XYM ] = Ω[−εXYM ] is the reproducing kernel for the ∗-scalar product it follows that we must

have
1
xBaΩ̃[XYM ] =

1
yB∗aΩ̃[XYM ] 2.21

where we have prepended superscripts 1
x and 1

y to indicate on which alphabet the corresponding operator is

supposed to act. Now 1.8 gives

1
xBaΩ̃[XYM ] = Ω̃

[(X+ε
1−q
z )Y

M

]
Ω[−εzX]

∣∣∣
za

= Ω̃[XYM ]Ω̃
[

εY
z(1−t)

]
Ω̃[ zXMM ]

∣∣∣
za

2.22
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Since for any two formal power series Φ(u),Ψ(u) we have

Φ(z)Ψ( 1
z )
∣∣∣
za

= Φ( 1
z )Ψ(z)

∣∣∣
z−a

2.23

the identity in 2.22 may be rewritten as

1
xBaΩ̃[XYM ] = Ω̃[XYM ]Ω̃

[
εzY
(1−t)

]
Ω̃[XM/z

M ]
∣∣∣
z−a

= Ω̃
[X(Y+

M
z

)
M

]
Ω̃
[
εzY
(1−t)

] ∣∣∣
z−a

= Ω̃
[X(Y+

M
z

)
M

]
Ω
[ −zY
(1−t)

] ∣∣∣
z−a

.

Thus 2.19 follows from 2.21.

Similarly we must have
1
xCaΩ̃[XYM ] =

1
yC∗aΩ̃[XYM ] . 2.24

Now I.14 gives

(−q)a−1 1
xCaΩ̃[XYM ] = Ω̃

[(X+
1−q
qz )Y
M

]
Ω[zX]

∣∣∣
za

= Ω̃[XYM ]Ω̃
[

Y
zq(1−t)

]
Ω̃[−εzXMM ]

∣∣∣
za

(using 1.17) = Ω̃[XYM ]Ω̃
[

zY
q(1−t)

]
Ω̃[−εXM/z

M ]
∣∣∣
z−a

= Ω̃
[X(Y−εMz )

M

]
Ω̃
[

zY
q(1−t)

] ∣∣∣
z−a

= Ω̃
[X(Y−εMz )

M

]
Ω
[ −εzY
q(1−t)

] ∣∣∣
z−a

.

Thus 2.20 follows from 2.24.

In view of 2.16 our next task is to compute the symmetric functions ∇h∗re∗n−r. The breakthrough is

provided by the following simple result.

Proposition 2.4
For any 0 ≤ r ≤ n we have

hr
[
X
M

]
en−r

[
X
M

]
=
∑
µ`n

H̃µ[X]

wµ
er[Bµ(q, t)] . 2.25

In particular we have

a) en
[
X
M

]
=
∑
µ`n

H̃µ[X]

wµ
and b) hn

[
X
M

]
=
∑
µ`n

H̃µ[X]

wµ
Tµ 2.26

and more importantly

∇hr
[
X
M

]
en−r

[
X
M

]
= ∆erhn[XM ] 2.27

with ∆er the symmetric function operator defined by setting for all partitions µ

∆erH̃µ[X; q, t] = er[Bµ(q, t)] H̃µ[X; q, t] .
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Proof

The ∗-duality of the Macdonald bases yields the expansion

hr[
X
M ]en−r[

X
M ] =

∑
µ`n

H̃µ[X]

wµ

〈
H̃µ , h

∗
re
∗
n−r
〉
∗

(by 1.16 ) =
∑
µ`n

H̃µ[X]

wµ

〈
H̃µ , erhn−r

〉
(by 1.31 ) =

∑
µ`n

H̃µ[X]

wµ
er[Bµ(q, t)] .

This proves 2.25. This given, 2.26 a) is the case r = 0 of 2.25 and 2.26 b) is the case r = n since

en[Bµ(q, t)] = Tµ when µ ` n. For 2.27 we simply note that 2.26 b) and 2.25 give

∆erhn[XM ] =
∑
µ`n

H̃µ[X]

wµ
Tµ er[Bµ(q, t)] = ∇hr

[
X
M

]
en−r

[
X
M

]
.

The identity in 2.27 immediately yields us our second reduction in our path to Theorem I.1:

Proposition 2.5

The identity

〈
∇Cp1Cp2 · · ·Cpk 1 , erhn−r

〉
=


tp1−1qk−1

〈
∇Cp2 · · ·CpkBp1−1 1 , er−1hn−r

〉
if p1 > 1

qk−1
〈
∇Cp2 · · ·CpkB0 1 , er−1hn−r

〉
+
〈
∇Cp2 · · ·Cpk 1 , erhn−1−r

〉
if p1 = 1

2.28

is valid for all compositions p = (p1, p2, . . . , pk) and 1 ≤ r ≤ n if and only if we have

C∗a∆erhn[XM ] =

 ta−1B∗a−1∆er−1
hn−1[XM ] if a > 1

B∗0∆er−1hn−1[XM ] + ∆erhn−1[XM ] if a = 1
. 2.29

Proof

The identity in 2.29 is simply 1.16 with multiple uses of 2.27 on the left on the right hand sides.

Now it happened that Glenn Tesler in [8] had derived plethystic formulas for all the operators ∆er

directly from the original Macdonald operators (see [8] Theorem 5.1). Forbidding as they appear in [8] these

formulas should in principle yield a proof of 2.29 and thereby establish our result. Fortunately, computer

explorations of the action Tesler’s operators on h∗n, made possible by the partial fraction constant term

algorithm of [20], yielded a surprising discovery which led to a much simpler path to 2.29. We refer the

reader to [11] for the methods and results that led to this discovery. Here we will directly obtain it from our

tool kit. It may be stated as follows.
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Theorem 2.4
The ∆′r symmetric function operator defined by setting

∆′rH̃µ[X; q, t) = er[Bµ(q, t)− 1
M ]H̃µ[X; q, t] 2.30

acts on h∗m according to the following identity

∆′rhm
[
X
M

]
= (−1)r

∑
λ`r

Tλhm
[
X( 1

M −Bλ)
]

wλ
. 2.31

Proof
The definition in 2.30 applied to 2.26 b) gives

∆′r hm[XM ] =
∑
µ`m

TµH̃µ[X]

wµ
er
[
Bµ − 1

M

]
2.32

and using 2.26 a) we get

er
[
Bµ − 1

M

]
= er

[
MBµ−1
M

]
=
∑
λ`r

1

wλ
H̃λ[MBµ − 1].

Thus 2.32 becomes

∆′r hm[XM ] =
∑
µ`m

TµH̃µ[X]

wµ

∑
λ`r

1

wλ
H̃λ[MBµ − 1] =

∑
λ`r

1

wλ

∑
µ`m

TµH̃µ[X]H̃λ[MBµ − 1]

wµ
. 2.33

But now the reciprocity formula 1.26 gives

TµH̃λ[MBµ − 1] = (−1)m−rTλ H̃µ[MBλ − 1] 2.34

and 2.33 becomes

∆′r hm[XM ] = (−1)m−r
∑
λ`r

Tλ
wλ

∑
µ`m

H̃µ[X] H̃µ[MBλ − 1]

wµ

( by 1.22 ) = (−1)m−r
∑
λ`r

Tλ
wλ

em

[
X(MBλ−1)

M

]
( by 1.7 ) = (−1)r

∑
λ`r

Tλ
wλ

hm

[
−X(MBλ−1)

M

]
.

2.35

This proves 2.31.

Our next and final reduction should reveal the significance of the identity in 2.31. .

Proposition 2.6
For a ≥ 1 and k ≥ 1 we have

C∗a∆′khn[XM ] = B∗a−1∆′k−1hn−1[XM ] + χ(a = 1)∆′khn−1[XM ] 2.36

if and only if

C∗a∆ekhn[XM ] = B∗a−1∆ek−1
hn−1[XM ] + χ(a = 1)∆ekhn−1[XM ] . 2.37
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Proof
Note first that

ek[Bµ] =

k∑
i=0

ek−i[Bµ − 1
M ]ei[

1
M ] =⇒ ∆ek =

k−1∑
i=0

∆′k−i ei[
1
M ] + ek[ 1

M ] 2.38

in particular we also have

∆ek−1
=

k−1∑
i=0

∆′k−1−i ei[
1
M ] . 2.39

Now 2.38 gives

C∗a∆ekh
∗
n =

k−1∑
i=0

ei[
1
M ]C∗a∆′k−ih

∗
n + ek[ 1

M ]C∗a h
∗
n

(using 2.36) =

k−1∑
i=0

ei[
1
M ]
(
B∗a−1∆′k−1−ih

∗
n−1 + χ(a = 1)∆′k−ihn−1[XM ]

)
+ ek[ 1

M ]C∗a h
∗
n

= B∗a−1

k−1∑
i=0

ei[
1
M ]∆′k−1−ih

∗
n−1 + χ(a = 1)

k−1∑
i=0

ei[
1
M ]∆′k−ihn−1[XM ] + ek[ 1

M ]C∗a h
∗
n .

2.40

However, from the definition in 2.20 we derive that

C∗ahn[XM ] = (− 1
q )a−1hn

[
X−εM/z

M

]
Ω
[ −εzX
q(1−t)

]∣∣∣
z−a

= (− 1
q )a−1hn

[
X
M − ε/z

]
Ω
[ −εzX
q(1−t)

]∣∣∣
z−a

= (− 1
q )a−1

(
hn[XM ] + hn−1[XM ] 1z

)
Ω
[ −εzX
q(1−t)

]∣∣∣
z−a

= χ(a = 1)hn−1[XM ] .

Thus 2.40 becomes

C∗a∆ekh
∗
n = B∗a−1

k−1∑
i=0

ei[
1
M ]∆′k−1−ih

∗
n−1 + χ(a = 1)

k∑
i=0

ei[
1
M ]∆′k−ihn−1[XM ]

(by 2.39 and 2.38) = B∗a−1∆ek−1
h∗n−1 + χ(a = 1)∆ekh

∗
n−1 .

This shows that 2.36 implies 2.37, which is the only side of this Proposition we will use. To show the reverse

implication we start with the relations

ek[Bµ− 1
M ] =

k∑
i=0

ek−i[Bµ]ei[− 1
M ] =⇒ ∆′k =

k−1∑
i=0

∆ek−i ei[− 1
M ] + ek[− 1

M ] , ∆′k−1 =

k−1∑
i=0

∆ek−1−i ei[− 1
M ]

and carry out the same steps of in the preceding argument.

Given our three reductions (Propositions 2.3, 2.5 and 2.6), our next result completes proof of the

identities in I.23 and I.24.
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Theorem 2.5
For all a ≥ 1 and 1 ≤ r ≤ n we have

C∗a∆′rhn[XM ] = ta−1B∗a−1∆′r−1hn−1[XM ] + χ(a = 1)∆′rhn−1[XM ] . 2.41

Proof
In view of 2.31 we will use 2.19 to get

B∗a−1hn−1
[
X( 1

M −Bµ)
]

= hn−1
[
(X +M/z)( 1

M −Bµ)
]

Ω[−zX/(1− t)]
∣∣∣
z−a+1

=

n−1∑
s=0

hn−1−s
[
X( 1

M −Bµ)
]
hs
[
M( 1

M −Bµ)
]

1
zsΩ[−zX/(1− t)]

∣∣∣
z−a+1

=

n−1∑
s=0

hn−1−s
[
X( 1

M −Bµ)
]
hs [1−MBµ]hs−a+1[−X/(1− t)] .

Using this with 2.31 for r→r − 1 and m→n− 1 we may rewrite 2.41 as

C∗a∆′rhn[XM ]−χ(a = 1)∆′rhn−1[XM ] =

= (−1)r−1ta−1
∑
µ`r−1

Tµ
wµ

n−1∑
s=0

hn−1−s
[
X( 1

M −Bµ)
]
hs [1−MBµ]hs−a+1[−X/(1− t)]

= (−1)r−1ta−1
n−1∑
s=a−1

hs−a+1[−X/(1− t)]
∑
µ`r−1

Tµ
wµ

hn−1−s
[
X( 1

M −Bµ)
]
hs [1−MBµ] ,

or better yet,

C∗a∆′rhn[XM ]−χ(a = 1)∆′rhn−1[XM ] =

= (−1)r−1ta−1
n∑
s=a

hs−a[−X/(1− t)]
∑
µ`r−1

Tµ
wµ

hn−s
[
X( 1

M −Bµ)
]
hs−1 [1−MBµ] .

2.42

Our task is to prove this identity. Now 2.20 gives

(−q)a−1C∗ahn
[
X( 1

M −Bµ)
]

= hn
[
(X − εM/z)( 1

M −Bµ)
]

Ω[−εzX/q(1− t)]
∣∣∣
z−a

=

n∑
s=0

hn−s
[
X( 1

M −Bµ)
]
hs
[
−εM( 1

M −Bµ)
]

1
zsΩ[−εzX/q(1− t)]

∣∣∣
z−a

=

n∑
s=0

hn−s
[
X( 1

M −Bµ)
]

(−1)shs [−1 +MBµ] (−1/q)s−ahs−a[−X/(1− t)] .

Thus

C∗ahn
[
X( 1

M −Bµ)
]

= (−q)
n∑
s=0

hn−s
[
X( 1

M −Bµ)
]
hs [−1 +MBµ] (1/q)shs−a[−X/(1− t)]
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and 2.31 for m = n gives

C∗a∆′rhn[XM ] = (−q)(−1)r
∑
µ`r

Tµ
wµ

n∑
s=0

hn−s
[
X( 1

M −Bµ)
]
hs [−1 +MBµ] (1/q)shs−a[−X/(1− t)]

= (−q)(−1)r
n∑
s=a

(1/q)shs−a[−X/(1− t)]
∑
µ`r

Tµ
wµ

hn−s
[
X( 1

M −Bµ)
]
hs [−1 +MBµ] .

Now we use 1.37 in the form

hs [−1 +MBµ] = (tq)s−1M
∑
ν→µ

cµν(
Tµ
Tν

)s−1 − χ(s = 1)

and obtain

C∗a∆′rhn[XM ] = (−1)r−1
n∑
s=a

(1/q)s−1hs−a[−X/(1− t)]
∑
µ`r

Tµ
wµ

hn−s
[
X( 1

M −Bµ)
] (

(tq)s−1M
∑
ν→µ

cµν(
Tµ
Tν

)s−1 − χ(s = 1)
)

= (−1)r−1
n∑
s=a

hs−a[−X/(1− t)]
∑
µ`r

Tµ
wµ

hn−s
[
X( 1

M −Bµ)
]
ts−1M

∑
ν→µ

cµν(
Tµ
Tν

)s−1 +

+ χ(a = 1)(−1)r
∑
µ`r

Tµ
wµ

hn−1
[
X( 1

M −Bµ)
]
.

Using 2.31 with m = n− 1 this can be rewritten as

C∗a∆′rhn[XM ] − χ(a = 1)∆′rhn−1
[
X
M

]
=

= (−1)r−1
n∑
s=a

hs−a[−X/(1− t)]
∑
µ`r

Tµ
wµ

hn−s
[
X( 1

M −Bµ)
]
ts−1M

∑
ν→µ

cµν(
Tµ
Tν

)s−1

= (−1)r−1
n∑
s=a

hs−a[−X/(1− t)]ts−1
∑
ν`r−1

Tν
wν

∑
µ←ν

Mcµν
wν
wµ

(
Tµ
Tν

)shn−s
[
X( 1

M −Bµ)
]

(by 1.39) = (−1)r−1
n∑
s=a

hs−a[−X/(1− t)]ts−1
∑
ν`r−1

Tν
wν

∑
ν←µ

dµν(
Tµ
Tν

)shn−s
[
X( 1

M −Bµ)
]
.

2.43

Next we split Bµ(q, t) into the sum Bµ(q, t) = Bν(q, t) +
Tµ
Tν

to get

∑
µ←ν

dµν(
Tµ
Tν

)shn−s
[
X( 1

M −Bµ)
]

=

n−s∑
u=0

hn−u−s
[
X( 1

M −Bν)
]
hu[−X]

∑
µ←ν

dµν
(Tµ
Tν

)u+s
(by 1.38) =

n−s∑
u=0

hn−u−s
[
X( 1

M −Bν)
]
hu[−X](−1)u+s−1eu+s−1

[
MBν − 1

]
=

n∑
v=s

hn−v
[
X( 1

M −Bν)
]
hv−s[−X]hv−1

[
1−MBν

]
.
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Using this in 2.43 gives

C∗a∆′rhn[XM ]−χ(a = 1)∆′rhn−1
[
X
M

]
=

= (−1)r−1
n∑
s=a

hs−a[−X/(1− t)]ts−1
∑
ν`r−1

Tν
wν

n∑
v=s

hn−v
[
X( 1

M −Bν)
]
hv−s[−X]hv−1

[
1−MBν

]
= (−1)r−1ta−1

n∑
v=a

∑
ν`r−1

Tν
wν

hn−v
[
X( 1

M −Bν)
]
hv−1

[
1−MBν

] v∑
s=a

hs−a[−tX/(1− t)]hv−s[−X]

= (−1)r−1ta−1
n∑
v=a

hv−a[−X/(1− t)]
∑
ν`r−1

Tν
wν

hn−v
[
X( 1

M −Bν)
]
hv−1

[
1−MBν

]
and now we can clearly see, that except for some trivial notational changes, this is precisely the desired

identity in 2.42. Thus 2.41 is valid precisely as asserted.

Our proof of Theorem I.1 is thus complete.

Note that setting r = n in the lower equality in I.17 yields〈
∇C1Cp2 · · ·Cpk1, en

〉
= qk−1

〈
∇Cp2 · · ·CpkB01, en−1

〉
+
〈
∇Cp2 · · ·Cpk1, enh−1

〉
. 2.44

Since we can only interpret h−1 as zero, the second term must identically vanish and we see that Corollary I.1

is indeed a consequence of Theorem I.1. However, the vanishing of the second term in 2.44 can be made more

explicit by a direct argument based on the identity in 2.37, which (by Proposition 2.6) is now a consequence

of Theorem 2.5. To see this note that, passing to the ∗-scalar product, we can rewrite the left-hand side of

2.44 in the form〈
∇C1Cp2 · · ·Cpk1, en

〉
=
〈
1 , C∗pk · · ·C

∗
p2C

∗
1∇h∗n

〉
∗ =

〈
1 , C∗pk · · ·C

∗
p2C

∗
1∆enh

∗
n

〉
∗ 2.45

but 2.37 for a = 1 specializes to

C∗1∆enh
∗
n = B∗0∆en−1

h∗n−1 + ∆enh
∗
n−1 . 2.46

However, since all the eigenvalues en[Bν ] vanish identically for all ν ` n − 1 the second term in 2.46 will

necessarily vanish giving

C∗1∆enh
∗
n = B∗0∆en−1

h∗n−1 .

Using this 2.45 becomes〈
∇C1Cp2 · · ·Cpk1, en

〉
=
〈
1 , C∗pk · · ·C

∗
p2B

∗
0∆en−1

h∗n−1
〉
∗

=
〈
∆en−1

B0Cp2 · · ·Cps1 , h
∗
n−1
〉
∗

(by 2.14) = qk−1
〈
∆en−1Cp2 · · ·CpsB0 1 , h∗n−1

〉
∗

= qk−1
〈
∆en−1

Cp2 · · ·CpsB0 1 , en−1
〉
.

Since the definition in 1.8 gives B01 = 1 and ∆en−1= ∇ on homogeneous polynomials of degree n we obtain〈
∇C1Cp2 · · ·Cpk1, en

〉
= qk−1

〈
∇Cp2 · · ·Cpk1 , en−1

〉
2.47

as desired.
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The next identities convert Theorem I.1 into a recursion.

Proposition 2.7
For all compositions p = (p1, p2, . . . , pk) |= n we have for 1 ≤ r ≤ n〈

∇Cp1Cp2 · · ·Cpk 1 , erhn−r
〉

=

tp1−1qk−1
∑

α=(α1,α2,...,αl(α))|=p1−1

〈
∇Cp2 · · ·CpkCα1Cα2 · · ·Cαl(α)

1 , er−1hn−r
〉

(for p1 > 1) 2.48

and for p1 = 1〈
∇C1Cp2 · · ·Cpk 1 , erhn−r

〉
= qk−1

〈
∇Cp2 · · ·Cpk 1 , er−1hn−r

〉
+ χ(r < n)

〈
∇Cp2 · · ·Cpk 1 , erhn−1−r

〉
.

2.49

Proof
Note that the definition in 1.8 for a = p1 − 1 gives

Bp1−1 1 = Ω[−εzX]
∣∣∣
zp1−1

= ep1−1 .

Thus the first equality in I.17 becomes〈
∇Cp1Cp2 · · ·Cpk 1 , erhn−r

〉
= tp1−1qk−1

〈
∇Cp2 · · ·Cpkep1−1 , er−1hn−r

〉
and 2.48 then follows from the identity in 2.10. On the other hand 2.49 is exactly I.17, taking account of

2.47 and the fact that B01 = 1.

We are now finally in a position to interpret our polynomials as weighted sums over collections of

parking functions. To this end it will be convenient to introduce the same notation as in the work of Angela

Hicks. For a given 1 ≤ r ≤ n let Shr,n denote the family of parking functions with diagonal permutation a

shuffle of 12 · · ·n− r with n(n− 1) · · · (n− r + 1) and set for a composition p = (p1, p2, . . . , pk) |= n

Spr,n(q, t) =
∑

PF∈Shr,n

tarea(PF )qdinv(PF )χ(p(PF ) = p) . 2.50

Now in [18] Angela Hicks gives a bijective proof for each of the following two recursions .

Proposition 2.8(Angela Hicks)

For all compositions p = (p1, p2, . . . , pk) and for all p1 > 1 and 1 ≤ r ≤ n we have

S(p1,p2,p3,...,pk)
r,n (q, t) = tp1−1qk−1

∑
α=(α1,α2,...,αl(α))|=p1−1

S
(p2,p3,...,pk,α1,α2,...,αl(α))
r−1,n−1 (q, t) . 2.51

Moreover, for p1 = 1 we have

S(1,p2,p3,...,pk)
r,n (q, t) = qk−1S

(p2,p3,...,pk)
r−1,n−1 (q, t) + χ(r < n)S

(p2,p3,...,pk)
r,n−1 (q, t) . 2.52

Thus it follows from these two propositions that the polynomials Spr,n(q, t) and the polynomials

Πp
r,n(q, t) =

〈
∇Cp1Cp2 · · ·Cpk 1 , erhn−r

〉
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satisfy the same recursions. This given, to show the equality

Spr,n = Πp
r,n (for all 0 ≤ r ≤ n and p |= n) 2.53

we only need to verify this equality for all the base cases.

To obtain the monomial expansion of a polynomial Πp
r,n, we can visualize the successive applications

of our recursions as the construction of a tree with root labeled Πp
r,n. Starting from the root, the offspring of

a node labeled by a polynomial Πp′

r′,n′ are nodes labeled by the terms on the right hand side of its recursion,

with the branches emanating from that node labelled by the corresponding monomials tp1−1qk−1. For our

recursion the leaves of the resulting tree are the nodes whose label evaluates to 1 or 0. Those are our base

cases and we only need to identify them. To this end note that at each step of the recursion either r or n− r
decreases by one, thus before n− 2 steps either r or n− r are reduced to 0, We claim that a node indexed

by the polynomial

Πp
0,n(q, t) =

〈
∇Cp1Cp2 · · ·Cpk1 , hn

〉
2.54

is a leaf. In fact, passing to the ∗-scalar product, and using the relations in 2.26, 2.54 may be rewritten in

the form

Πp
0,n(q, t) =

〈
1 , C∗pk · · ·C

∗
p2C

∗
p1∇e

∗
n

〉
∗ =

〈
1 , C∗pk · · ·C

∗
p2C

∗
p1h
∗
n

〉
∗ . 2.55

Now we have seen in the proof of Proposition 2.6 that

C∗ah
∗
n = χ(a = 1)h∗n−1 2.63

thus successive uses of this relation yield that Πp
0,n(q, t) is 1 or 0 according as all the components of p =

(p1, p2, . . . , pk) are equal to 1 or not. This proves our assertion.

Let us next examine the polynomial

Πp
n,n(q, t) =

〈
∇Cp1Cp2 · · ·Cpk1 , en

〉
2.57

and note that for p1 > 1 the recursion in 2.48 shows that every node labelled by Πp
n,n(q, t) has children

labeled by polynomials Πp′

n−1,n−1(q, t) for various p′ |= n − 1. Since at each iteration parts are replaced by

lesser parts, all the paths in the subtree emanating from a node labelled by Πp′

n−1,n−1(q, t) will eventually

lead to a node labelled by Πp′

n′,n′(q, t) with p′ = (1, p′2, . . . , p
′
s). Since the identity in 2.47 gives that

Π
(1,p′2,...,p

′
s)

n′,n′ (q, t) = qs−1Π
(p′2,...,p

′
s)

n′−1,n′−1(q, t)

we see that all the paths descending from a node labelled by Πp
n,n will eventually lead to a node labelled by

Π
(1)
1,1 which trivially evaluates to 1 and therefore it is a leaf.

The same reasoning applied to the tree corresponding to the recursion satisfied by the polynomial

Spr,n(q, t) yields that every path of this tree will eventually lead to a node labelled by Sp0,n or a node labeled

by S1
1,1. Now we can trivially see from 2.50 that S1

1,1 = 1. On the other hand for r = 0 the right hand

side of 2.50 reduces to a sum over parking functions PF with σ(PF ) = 12 · · ·n. However, by the column

increasing condition, there are no parking functions with this diagonal permutation and composition p if any
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component of p is greater than 1 and the sum reduces to 0 in this case. But if all the components of p are

equal to 1. Thus 2.50 reduces to a single summand obtained by placing 12 · · ·n on the main diagonal and

from right to left. Since such arrangement creates no dinv we see that Sp0,n(q, t) evaluates to 1 in this case.

This verifies the equality in 2.53 for all the base cases and completes the proof of Theorem I.2.

We terminate by adding a few words to justify the last statement at the end of Theorem I.2. The

easiest way to do this is to use the fact that, for any Dyck path U , the quasi-symmetric polynomial

FU (X; q, t) =
∑

U(PF )=U

tarea(PF )qdinv(PF )Qides(PF )(X)

is also symmetric. Thus it follows from Gessel’s theorem [12] that for 1 ≤ r ≤ n− 1 we have∑
U(PF )=U

tarea(PF )qdinv(PF )χ(ides(PF ) = {1, 2, · · · , r}) =
〈
FU , Z{1,2,···,r}

〉
.

Since we may write

erhn−r = Z{1,2,···,r−1} + Z{1,2,···,r} = Z{n−r+1,2,···,n−1} + Z{n−r,2,···,n−1}

we necessarily have the equality∑
U(PF )=U

tarea(PF )qdinv(PF )χ(ides(PF ) = {1, 2, · · · , r − 1} or {1, 2, · · · , r}) =

=
∑

U(PF )=U

tarea(PF )qdinv(PF )χ(ides(PF ) = {n− r + 1, 2, · · · , n− 1} or {n− r, 2, · · · , n− 1}) .

This given, the equality asserted the end of Theorem I.2 is simply obtained by summing these equalities for

all Dyck paths of diagonal composition p.
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