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Kronecker Coefficients via Symmetric
Functions and Constant Term identities

by

A. Garsia, N. Wallach, G. Xin & M. Zabrocki

Abstract. This work lies across three areas of investigation that are by themselves of independent interest.

A problem that arose in quantum computing led us to a link that tied these areas together. This link led to

the calculation of some Kronecker coefficients by computing constant terms and conversely the computations

of certain constant terms by computing Kronecker coefficients by symmetric function methods. This led to

results as well as methods for solving numerical problems in each of these separate areas.

Introduction

An outstanding yet unsolved problem is to obtain a combinatorial rule for the computation of the

integers

cλλ(1),λ(2),...,λ(k) =
1

n!

∑
σ∈Sn

χλ
(1)

(σ)χλ
(2)

(σ) · · ·χλ
(k)

(σ)χλ(σ) I.1

where χλ and each χλ
(i)

are irreducible Young characters of Sn. Let us recall that the pointwise product of

any number of characters χ(1), χ(2), . . . , χ(k) of the symmetric group Sn is also a character of Sn, and we shall

denote it here by χ(1) ∗ χ(2) ∗ · · · ∗ χ(k). This is usually called the ‘Kronecker’ product of χ(1), χ(2), . . . , χ(k).

Thus I.1 may written as

cλλ(1),λ(2),...,λ(k) =
〈
χλ

(1)

∗ χλ
(2)

∗ · · · ∗ χλ
(k)

, χλ
〉
. I.2

This integer gives the multiplicity of χλ in the Kronecker product χλ
(1) ∗ χλ(2) ∗ · · · ∗ χλ(k)

. Using the

Frobenius map F that sends the irreducible character χλ onto the Schur function sλ, we can define the

Kronecker product of two homogeneous symmetric functions of the same degree f and g by setting

f ∗ g = F
(
(F−1f) ∗ (F−1g)

)
With this notation the coefficient in I.1 may also be written in the form

cλλ(1),λ(2),...,λ(k) =
〈
sλ(1) ∗ sλ(2) ∗ · · · ∗ sλ(k) , sλ

〉
I.3

where
〈
,
〉

denotes the customary Hall scalar product of symmetric polynomials. This is the vehicle that

reduces the computation of Kronecker coefficients to symmetric function manipulations.

A problem which arose in quantum computing (see [6], [7], [11] and [12]) requires the explicit

evaluation of the following generating function of Kronecker products

Wk(q) =
∑
d≥0

q2d
〈
sd,d ∗ sd,d ∗ · · · ∗ sd,d , s2d

〉
I.4

where, in each term, the Kronecker product has k factors.

Here and after we will refer to the task of constructing Wk(q) as the ‘Sdd Problem’.
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It is well known (see [6] and [7]) and it is an easy consequence of Molien’s theorem (see [3]) that all

these series can (in principle) be obtained from the following constant term identity.

Wk(q) =

∏k
i=1

(
1− a2i

)∏
S⊆[1,k]

(
1− q

∏
i∈S ai/

∏
j 6∈Saj

)∣∣∣∣
a01a

0
2···a

0
k

I.5

To this date these series have only been obtained for 1 ≤ k ≤ 5. They are as follows

W2(q) =
1

1− q2
, W3(q) =

1

1− q4
, W4(q) =

1

(1− q2)(1− q4)2(1− q6)
,

and

W5(
√
q) =

P5(q)

(1− q2)4(1− q3)(1− q4)6(1− q5)(1− q6)5
,

with

P5(q) = q54 + q52 + 16q50 + 9q49 + 98q48 + 154q47 + 465q46 + 915q45 + 2042q44 + 3794q43 + 7263q42

+ 12688q41 + 21198q40 + 34323q39 + 52205q38 + 77068q37 + 108458q36 + 147423q35 + 191794q34

+ 241863q33 + 292689q32 + 342207q31 + 386980q30 + 421057q29 + 443990q28 + 451398q27

+ 443990q26 + 421057q25 + 386980q24 + 342207q23 + 292689q22 + 241863q21 + 191794q20

+ 147423q19 + 108458q18 + 77068q17 + 52205q16 + 34323q15 + 21198q14 + 12688q13

+ 7263q12 + 3794q11 + 2042q10 + 915q9 + 465q8 + 154q7 + 98q6 + 9q5 + 16q4 + q2 + 1 .

Clearly, the result for W2(q) is immediate from the definition in I.4. Moreover W3(q), W4(q) can be easily

obtained by computing the constant term in I.5 with ‘Omega’ Package of Andrews et. al. However, the

explosion of complexity from k = 4 to k = 5 required more powerful machinery. The calculation of W5(q)

using I.5 was first carried out by J-G. Luque and J. Y. Thibon (see [7]) by the partial fraction algorithm

of the second author ([13] and [14]). We understand (personal communication by J. Y. Thibon) that the

original calculation took a few hours with the computers they used at that time. With current technology,

by means of some combinatorial reductions (see [3]), the computation of W5(q) can be reduced to a few

minutes. Nevertheless to this date, the evaluation of W6(q) by I.5, appears out of reach of our computers.

The present paper resulted from a continuing effort to determine these series by symmetric function

methods. We cover here a number of results and techniques that have emerged from this effort.

Our first result in this direction may be stated as follows.

Theorem I.1

sd,d ∗ sd,d =
∑
λ`2d

sλ χ(λ ∈ EO4) I.6

where EO4 denotes the set of partitions of length 4 whose parts are ≥ 0 and all even or all odd.

It is easily seen that the expressions for W3(q) and W4(q) are immediate consequences of this identity.

We should mention that a combinatorial proof of I.5 was obtained by J. Remmel (personal communication).
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The results and techniques that have emerged from this effort, led us to further uses of the partial

fraction algorithm in the computation of generating functions of Kronecker products.

These computations are based on the following surprisingly simple identity

Proposition I.1
For any k ≥ 1 we have∏k
i=1(1− yi)∏

S⊆[1,k](1− q
∏
i∈S yi)

=
∑
m≥0

qm
∑
r1≥0

∑
r2≥0

· · ·
∑
rk≥0

yr11 y
r2
2 · · · y

rk
k

〈
sm−r1,r1 ∗sm−r2,r2 ∗· · ·∗sm−rk,rk , sm

〉
I.7

where a factor sm−ri,ri is to be interpreted as −sri−1,m−ri+1 if m+ 1 < 2ri and 0 if m+ 1 = 2ri.

In particular we will see that I.5 is an immediate consequence of this identity. The following is a list

of the results we will derive from I.7.

Theorem I.2

For any given r1, r2, . . . , rk the Kronecker coefficient

〈
sm−r1,r1 ∗ sm−r2,r2 ∗ · · · ∗ sm−rk,rk , sm

〉
stabilizes after a finite number of terms and the stable value is given by the coefficient

Pr1,r2,...,rk(1) =

∏k
i=1(1− yi)∏

φ 6=S⊆[1,k](1−
∏
i∈S yi)

∣∣∣∣
y
r1
1 y

r2
2 ···y

rk
k

.

Theorem I.3

If we set

F3(y1, y2, y3; q) =
∑
r1≥0

∑
r2≥0

∑
r3≥0

∑
m≥2max(r1,r2,r3)

qmyr11 y
r2
2 y

r3
3

〈
sm−r1,r1 ∗ sm−r2,r2 ∗ sm−r3,r3 , sm

〉
I.8

and

G3(y1, y2, y3; q) =
∑
r3≥0

∑
r2≥r3

∑
r1≥r2

∑
m≥2r1

qmyr11 y
r2
2 y

r3
3

〈
sm−r1,r1 ∗ sm−r2,r2 ∗ sm−r3,r3 , sm

〉
I.9

then

F3(y1, y2, y3; q) =
1 + q3y1y2y3

(1− q)(1− q2y1y2)(1− q2y1y3)(1− q2y2y3)(1− q4y21y22y23)
I.10

and

G3(y1, y2, y3; q) =
1

(1− q)(1− q2y1y2)(1− q3y1y2y3)(1− q4y21y2y3)(1− q4y21y22y23)
. I.11
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Theorem I.4
For given integers r1 ≥ r2 ≥ r3 ≥ 0 set

Φr1,r2,r3(q) =
∑

m≥2max(r1,r2,r3)

qm
〈
sm−r1,r1 ∗ sm−r2,r2 ∗ sm−r3,r3 , sm

〉
I.12

then provided r2 + r3 ≥ r1 we have

Φr1,r2,r3(q) =
q2r1

(1− q)(1− q2)

 1− qr2+r3−r1+2 if r1 + r2 + r3 is even

q − qr2+r3−r1+2 if r1 + r2 + r3 is odd

I.13

otherwise Φr1,r2,r3(q) vanishes identically.

In this paper we use methods and algorithms from several areas. In an effort to make our presentation

self contained, we have included brief tutorials developing the tools we are about to use. Some of this material

may be well known to the experts in each particular field, this will be compensated by making our writing

readily accessible to the wider audience of researchers who may not be simultaneously proficient in all these

disparate areas. In particular in section 1 we have a brief introduction to plethystic notation and use it

to derive some basic tools for the computation of Kronecker products and use them to prove Proposition

I.1. We will also include in this section a remarkably slick proof of Proposition I.1 kindly provided to us

by J. Y. Thibon (personal communication). In section 2 we use these tools to compute the Schur function

expansion of sdd ∗ sdd and obtain a proof of Theorem I.1. In section 3 we develop the setup for computing

Kronecker coefficients via constant terms. The section terminates with a tutorial on the use of the partial

fraction algorithm of G. Xin. In section 4, we use the Xin algorithm to compute the constant terms yielding

Theorems I.2, I.3 and I.4.

1. Symmetric function methods
As we stated in the introduction the first three series W2(q), W3(q) and W4(q) can be easily com-

puted. Indeed, for k = 2 we have

W2(q) =
∑
d≥0

q2d
〈
sd,d ∗ sd,d , s2d

〉
=
∑
d≥0

q2d
〈
sd,d , sd,d

〉
=
∑
d≥0

q2d =
1

(1− q2)
.

For k = 3 we may write

W3(q) =
∑
d≥0

q2d
〈
sd,d ∗ sd,d ∗ sd,d , s2d

〉
=
∑
d≥0

q2d
〈
sd,d ∗ sd,d , sd,d

〉
and Theorem I.1 forces d to be even, yielding

W3(q) =
∑
d≥0

q4d =
1

1− q4
.

For k = 4 we start by writing

W4(q) =
∑
d≥0

q2d
〈
sd,d ∗ sd,d ∗ sd,d ∗ sd,d , s2d

〉
=
∑
d≥0

q2d
〈
sd,d ∗ sd,d , sd,d ∗ sd,d

〉
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and Theorem I.1 gives

W4(q) =
∑
d≥0

q2d
∑
λ`2d

〈
sλ , sλ

〉
χ(λ ∈ EO4)

=
∑
λ`2d

q|λ|χ
(
λ ∈ E≤4

)
+
∑
λ`2d

q|λ|χ
(
λ ∈ O=4

) 1.4

where E≤4 denotes the collection of partitions with at most four parts all of which are even and O=4 denotes

the collection of partitions with with exactly 4 odd parts. Since to obtain a partition of 2d in E≤4 we need

only double the parts of any partition of d with at most 4 parts we see that we have∑
λ`2d

q|λ|χ
(
λ ∈ E≤4

)
=

1

(1− q2)(1− q4)(1− q6)(1− q8)
. 1.5

Similarly, we can obtain each partition of 2d in O=4 by taking a partition of d − 1 with at most 4 parts,

doubling each part and adding a column of length 4. This gives

∑
λ`2d

q|λ|χ
(
λ ∈ O=4

)
=

q4

(1− q2)(1− q4)(1− q6)(1− q8)
. 1.6

Combining 1.4, 1.5 and 1.6 gives

W4(q) =
1 + q4

(1− q2)(1− q4)(1− q6)(1− q8)

=
1

(1− q2)(1− q4)(1− q6)(1− q4)
=

1

(1− q2)(1− q4)2(1− q6)

as desired.

We will prove Theorem I.1 in the next section. In this section we will gather the background needed

for this proof.

It will be good to begin by a brief introduction to plethystic substitutions. The convenience of this

notational device in the theory of symmetric functions is often overlooked for, in principle, everything that

can be done with it can also be done without it. Witness Macdonald’s treatise that manages to avoid it

almost in its entirety. We say ‘almost’ since many of the computations in Chapter IV are in fact ‘plethystic’

in disguise (for instance in page 310).

We make extensive use of the notion of plethystic substitution of a formal power series E =

E(t1, t2, . . .) into a symmetric function P , denoted P [E] . This operation, which can be easily implemented

on a computer, consists of two steps.

(1) Expand P as a polynomial P = QP (p1, p2, . . . , pk, . . .) in the power symmetric functions.

(2) Set P [E] = QP (p1, p2, . . . , pk, . . .)
∣∣∣
pk=E(tk1 ,t

k
2 ,...)

.

The power of this notation results from the fact that simple operations within the plethystic bracket

result in transformations of significant complexity outside the bracket. But the real significance of this

statement can only be appreciated through experimentation. For this we will have ample opportunity within

this writing.



Kronecker Coefficients A. Garsia, N. Wallach, G. Xin, & M. Zabrocki September 27, 2010 6

A crucial ingredient in plethystic calculus is the ‘kernel’

Ω = exp
(∑
k≥1

pk
k

)
1.10

which may be also be viewed as the ordinary generating function of the ordinary ‘homogeneous’ symmetric

function. More precisely

Ω =
∑
m≥0

hm, 1.11

where the equality of 1.10 and 1.11 results from the familiar expansion

hm =
∑
ρ`m

pρ
zρ

1.12

(recalling that if ρ = 1a12a23a3 · · · then zρ =
∏
i i
aiai!).

We shall also make extensive use here of the Frobenius formula (for ρ ` m)

pρ =
∑
λ`m

χλρ sλ 1.13

where as customary χλρ denotes the Young character indexed by λ at the conjugacy class of permutations of

Sm of cycle structure ρ.

We shall also make use of the operation of skewing by a symmetric function. For a symmetric function

f , the notation f⊥ will represent an operation on symmetric functions which is dual to multiplication in the

sense that 〈
f⊥g, h

〉
= 〈g, fh〉 .

In particular, to compute how f⊥ acts on a symmetric function g, we may use the scalar product to expand

g in the power or Schur basis,

g =
∑
λ

〈g, pλ〉 pλ/zλ =
∑
λ

〈g, sλ〉 sλ

and conclude that

f⊥g =
∑
λ

〈g, fpλ〉 pλ/zλ =
∑
λ

〈g, fsλ〉 sλ .

This given, we have now all the ingredients needed to give, as a warm up exercise, a plethystic proof

of the identity in I.5. To begin, we simply note that we have

1∏
S⊆[1,k]

(
1− q

∏
i∈S ai/

∏
j 6∈S aj

) = Ω
[
q
(
a1 + 1/a1

)(
a2 + 1/a2

)
· · ·
(
ak + 1/ak

)]
.

(by 1.11 ) =
∑
m≥0

qmhm
[(
a1 + 1/a1

)(
a2 + 1/a2

)
· · ·
(
ak + 1/ak

)]
.

Thus ∏k
i=1(1− a2i )∏

S⊆[1,k]

(
1− q

∏
i∈S ai/

∏
j 6∈S aj

)∣∣∣∣
a01a

0
2···a

0
k

=
∑
m≥0

qmhm

[∏k
i=1

(
ai + 1/ai

)] k∏
i=1

(1− a2i )
∣∣∣∣
a01a

0
2···a

0
k

. 1.14
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Now 1.12 gives

hm

[∏k
i=1

(
ai + 1/ai

)]
=

∑
ρ`m

1

zρ

k∏
i=1

pρ
[
ai + 1/ai

]
. 1.15

Setting for convenience Ai = ai + 1/ai, a multiple use of 1.13 in 1.14 gives

hm
[
A1A2 . . . Ak

]
=

∑
α1`m

∑
α2`m

· · ·
∑
αk`m

sα1
[A1]sα2

[A2] · · · sαk [Ak]
∑
ρ`m

χα1
ρ χα2

ρ · · ·χαkρ
zρ

and the definition of Kronecker product of symmetric functions then gives

hm
[
A1A2 . . . Ak

]
=

∑
α1`m

∑
α2`m

· · ·
∑
αk`m

sα1 [A1]sα2 [A2] · · · sαk [Ak]
〈
sα1 ∗ sα2 ∗ · · · ∗ sαk , sm

〉
1.16

Since Schur functions in a two variable alphabet vanish at partitions with more than two parts, it follows

that we may take here αi = (m− ri, ri) with ri ≤ m/2 reducing 1.16 to

hm

[∏k
i=1Ai

]
=

bm/2c∑
r1=0

bm/2c∑
r2=0

· · ·
bm/2c∑
rk=0

( k∏
i=1

sm−ri,ri [Ai]

)〈
sm−r1,r1 ∗ sm−r2,r2 ∗ · · · ∗ sm−rk,rk , sm

〉
. 1.17

Now note that

sm−ri,ri [ai + 1/ai] =

m−2ri∑
k=0

aki (1/ai)
m−2ri−k =

a
−(m−2ri)
i − am−2ri+2

i

1− a2i
. 1.18

Thus

(1− a2i )sm−ri,ri [ai + 1/ai]
∣∣∣
a0
i

=
{

1 if m− 2ri = 0
0 otherwise

which forces m to be an even number. Thus for m = 2d, 1.17 gives that

h2d

[∏k
i=1(ai + 1/ai)

] k∏
i=1

(1− a2i )
∣∣∣∣
a01a

0
2···a

0
k

=
〈
sdd ∗ sdd ∗ · · · ∗ sdd , s2d

〉
and 1.14 yields ∏k

i=1(1− a2i )∏
S⊆[1,k]

(
1− q

∏
i∈S ai/

∏
j 6∈S aj

)∣∣∣∣
a01a

0
2···a

0
k

=
∑
d≥0

q2d
〈
sdd ∗ sdd ∗ · · · ∗ sdd , s2d

〉

as desired.

The same kinds of manipulations yield us our first

Proof of Proposition I.1
Let

G(q; y1, y2, . . . yk; a1, a2, . . . , ak) = Ω
[
q
∏k
i=1(1 + 1

ai
)
] k∏
i=1

1− 1
ai

1− aiyi
1.20
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We will compute the constant term

G(q; y1, y2, . . . yk; a1, a2, . . . , ak)
∣∣∣
a01a

0
2···a

0
k

. 1.21

in two different ways. To begin note that for any monomial ap11 a
p2
2 · · · a

pk
k we have

1

ap11 a
p2
2 · · · a

pk
k

k∏
i=1

1

1− aiyi

∣∣∣
a01a

0
2···a

0
k

= yp11 y
p2
2 · · · y

pk
k .

Thus the coefficient of qm in 1.20 gives

hm

[∏k
i=1(1 + 1

ai
)
]∏k

i=1(1− 1
ai

)

k∏
i=1

1

1− aiyi

∣∣∣
a01a

0
2···a

0
k

= hm

[∏k
i=1(1 + yi)

]∏k
i=1(1− yi),

from which we derive that

G(q; y1, y2, . . . yk; a1, a2, . . . , ak)
∣∣∣
a01a

0
2···a

0
k

= Ω
[
q
∏k
i=1(1 + yi)

]∏k
i=1(1− yi) =

∏k
i=1(1− yi)∏

S⊆[1,k](1− q
∏
i∈S yi)

.

On the other hand, as we noted before, we can write

hm

[∏k
i=1(1 + 1

ai
)
]

=

bm2 c∑
l1=0

bm2 c∑
l2=0

· · ·
bm2 c∑
lk=0

k∏
i=1

sm−li,li [1 + 1/ai]
〈
sm−l1,l1 ∗ sm−l2,l2 ∗ · · · ∗ sm−lk,lk , sm

〉
.

Note further that the identity

sm−l,l[1 + 1/a] =
1

al

m−2l∑
k=0

a−k =
1

al
1− a−(m−2l+1)

1− 1/a

gives, for l ≤ bm/2c and any integer r ≥ 0

(1− 1/a)sm−l,l[1 + 1/a]ar
∣∣∣
a0

= ar−l − ar−m+l−1
∣∣∣
a0

=

χ(l = r) if r ≤ bm/2c
0 if bm/2c < r ≤ m− bm/2c
−χ(l = m− r + 1) if r > m− bm/2c

.

This implies that

∏k
i=1(1− 1

ai
)hm

[∏k
i=1(1 + 1

ai
)
]
ar11 a

r2
2 · · · a

rk
k

∣∣∣∣
a01a

0
2···a

0
k

=
〈
sm−r1,r1 ∗ sm−r2,r2 ∗ · · · ∗ sm−rk,rk , sm

〉
1.22

with the proviso that we must take

sm−ri,ri =


sm−ri,ri if ri ≤ bm/2c
0 if bm/2c < ri ≤ m− bm/2c
−sri−1,m−ri+1 if ri > m− bm/2c

.
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Taking this into account, multiplying 1.22 by yr11 y
r2
2 · · · y

rk
k and summing for all ri ≥ 0 gives

k∏
i=1

(1− 1
ai

)hm

[∏k
i=1(1 + 1

ai
)
] k∏
i=1

1

1− aiyi

∣∣∣∣
a01a

0
2···a

0
k

=
∑
r1≥0

∑
r2≥0

· · ·
∑
rk≥0

yr11 y
r2
2 · · · y

rk
k

〈
sm−r1,r1 ∗ sm−r2,r2 ∗ · · · ∗ sm−rk,rk , sm

〉
.

Multiplying by qm and summing proves I.7 and completes our argument.

In the remainder of this section we will review a variety of tools for the computation of Kronecker

products which will be used in the next section in the proof of Theorem I.1. We will require the use of the

following well known basic identities.

Proposition 1.1

1) pα ∗ pβ = χ(α = β)zαpα

2) pα ∗ sλ = χλα pα

3) hm ∗ f = f

1.23

The last equality holding true for all homogeneous symmetric functions of degree m.

Proof

Recalling that the definition of the Kronecker product of two homogeneous symmetric functions f, g

is defined by means of the Frobenius map by setting

f ∗ g = F((F−1f) ∗ (F−1g))

then 1.23 is an immediate consequence of the fact that

a) F−1pα = zαCα and b) FCα = pα/zα

where Cα is the conjugacy class of permutations with cycle structure α. The identity in 1.23 2) then follows

by linearity from 1.23 1) and the Frobenius formula

sλ =
∑
β

χλβ pβ/zβ .

Finally 1.23 is a simple consequence of the fact that the symmetric function hm is the Frobenius image

of the trivial character, and therefore it must act as the identity in a Kronecker product. That is for any

homogeneous symmetric polynomial of degree m we have

hm ∗ f = f.

An important tool for reducing the computation of Kronecker products to ordinary products is

provided by the following basic identity of D. E. Littlewood [5] (see also [2] for some useful corollaries).
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Proposition 1.2
For any k-tuple of homogeneous symmetric functions f1, f2, . . . , fk of degrees a1, a2, . . . , ak and any

symmetric function H homogeneous of degree a1 + a2 + · · ·+ ak we have

f1f2 . . . fk ∗H =
∑
α1`a1

∑
α2`a2

· · ·
∑
αk`ak

〈
sα1

sα2
· · · sαk , H

〉
f1 ∗ sα1

f2 ∗ sα2
· · · fk ∗ sαk . 1.24

Proof

We need only verify 1.24 for fi = pβ(i) with β(i) ` ai and H = sλ with λ ` a1 + a2 + · · ·+ ak. This

given, the left hand side of 1.24 becomes, using 1.23 2)

LHS = pβ(1)∨β(2)∨···∨β(k) ∗ sλ = χλβ(1)∨β(2)∨···∨β(k) pβ(1)∨β(2)∨···∨β(k)

=
〈
pβ(1)∨β(2)∨···∨β(k) , sλ

〉
pβ(1)∨β(2)∨···∨β(k) .

where the symbol ∨ denotes coalescing of partitions. On the other hand, using again 1.23 2), the right hand

side becomes

RHS =
∑
α1`a1

∑
α2`a2

· · ·
∑
αk`ak

〈
sα1sα2 · · · sαk , sλ

〉
χα1

β(1)pβ(1)χα2

β(2)pβ(2) · · ·χαk
β(k)pβ(k)

and 1.24 in this case immediately follows from the Frobenius expansion∑
α`a

sαχ
α
β = pβ .

We can now derive the following useful corollary.

Proposition 1.3
For any homogeneous symmetric function H of degree a1 + a2 + . . .+ ak we have

ha1ha2 · · ·hak ∗H =
∑
α1`a1

∑
α2`a2

· · ·
∑
αk`ak

〈
sα1

sα2
· · · sαk , H

〉
sα1

sα2
· · · sαk

=
∑
α2`a2

· · ·
∑
αk`ak

sα2
· · · sαk × s⊥α2

· · · s⊥αk H .
1.25

Proof

The first equality follows by setting fi = hai in 1.24 and using 1.23 3). Note further that the first

equality may be also rewritten as

ha1ha2 · · ·hak ∗H =
∑
α1`a1

∑
α2`a2

· · ·
∑
αk`ak

〈
sα1

, s⊥α2
· · · s⊥αksλ

〉
sα1

sα2
· · · sαk

and thus the second equality is obtained by carrying out the sum over all α1 ` a1.

Proposition 1.4
For any triplet of homogeneous symmetric functions of the same degree f, g, h we have〈

f ∗ g, h
〉

=
〈
f [X]g[Y ] , h[XY ]

〉
XY

. 1.26
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Proof

Clearly we need only verify this for power basis elements. In this case 1.26 reduces to〈
pα ∗ pβ , pγ

〉
=
〈
pα[X]pβ [Y ] , pγ [X]pγ [Y ]

〉
XY

Using 1.23 1) this becomes

χ(a = b = c) z2α =
〈
pα, pγ

〉〈
pβ , pγ

〉
= χ(a = c)zαχ(b = c)zβ .

This shows that the two sides of 1.26 are equal and completes the proof.

We will use two remarkable consequences of 1.26. More precisely

Proposition 1.5
For any 1 ≤ k ≤ n and any three homogeneous symmetric functions f, g, h of degrees n − k, n and

n respectively we have

a)
〈
hkf , g ∗ h

〉
=
∑
α`k

〈
f , s⊥α g ∗ s⊥αh

〉
b)

〈
ekf , g ∗ h

〉
=
∑
α`k

〈
f , s⊥α g ∗ s⊥α′h

〉
.

1.27

Proof

From 1.26 with f → hkf it follows that〈
hkf , g ∗ h

〉
=
〈
hk[XY ]f [XY ] , g[X]h[Y ]

〉
XY

and the Cauchy formula gives〈
hkf , g ∗ h

〉
=
∑
α`k

〈
sα[X]sα[Y ]f [XY ] , g[X]h[Y ]

〉
XY

=
∑
α`k

〈
f [XY ] ,

〈
sα[X]⊥g[X]sα[Y ]⊥h[Y ]

〉
XY

(by 1.26 again ) =
∑
α`k

〈
f , s⊥α g ∗ s⊥αh

〉
.

This proves 1.27 a). The proof of 1.27 b) is entirely analogous except that we set f → ekf and use the dual

Cauchy formula

ek[XY ] =
∑
α

sα[X]sα′ [Y ].

Finally we must point out that the two well known row and column adding formulas for Schur

functions are immediate consequences of the Jacobi-Trudi identities.

Proposition 1.6
For any partition λ with largest part ≤ m and any µ with at most m parts we have

a) sm,λ =
∑
i≥0

(−1)ihm+i e
⊥
i sλ

b) sµ+1m =
∑
i≥0

(−1)iem+i h
⊥
i sµ

1.28

where µ+ 1m means adding a column of length m to µ.
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Proof

We have

sm,λ = det


hm hm+1 hm+2 · · · hm+k

hλ1−1 hλ1 hλ1+1 · · · hλ1+k−1
hλ2−2 hλ2−1 hλ2

· · · hλ2+k−2
...

...
...

. . .
...

hλk−k hλk−k+1 hλk−k+2 · · · hλk

 .

Expanding this determinant with respect to the first row gives

sm,λ =

k∑
i=0

(−1)khm+isλ/1i 1.29

which is another way of writing 1.28 a). To prove 1.28 b) we simply note that applying the ω transformation

to 1.29 we obtain

sλ′+1m =

k∑
i=0

(−1)kem+isλ′/i

which is 1.28 b) for µ = λ′.

It is important to note the following property of the Kronecker product

Proposition 1.7
If λ and µ are partitions of lengths k and h respectively then the Schur function expansion of the

Kronecker product

sλ ∗ sµ

involves Schur functions indexed by partitions of length at most hk

Proof

Note that from 1.25 it follows that

ha1ha2 · · ·hak ∗ sλ =
∑
α1`a1

∑
α2`a2

· · ·
∑
αk`ak

〈
sα1sα2 · · · sαk , sµ

〉
sα1sα2 · · · sαk . 1.30

Now from the Littlewood-Richardson rule it follows that the scalar product
〈
sα1sα2 · · · sαk , sµ

〉
is different

from zero only if each of the partitions αi is contained in µ. Thus if µ has length h then again from the

Littlewood-Richardson rule it follows that the Schur function expansion of the product sα1
sα2
· · · sαk will

only involve Schur functions indexed by partitions with at most kh parts. Thus the assertion is an immediate

consequence of 1.30 and the Jacobi-Trudi identity.

We have now all the ingredients we need to prove Theorem I.1.

But before we terminate this section it is instructive to see the symmetric function tricks that Thibon

uses to prove Proposition I.1. His argument is based on the simple, but powerful idea that, when there is a

way to force the degree to be the desired one, then the Schur row adder, which in our notation is

Ha =
∑
i≥0

ha+i(−1)ie⊥i
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may loosely be replaced by (∑
n≥0

hn

)(∑
k≥0

(−1)ke⊥k

)
.

In particular we can write(∑
n≥0

hn

)(∑
k≥0

(−1)ke⊥k

)
sr

∣∣∣∣
m

=
(∑
n≥0

hn

)(
sr − sr−1

)∣∣∣∣
m

= sm−rsr − sm−r+1sr−1 = sm−r,r 1.31

where ‘
∣∣∣
m

’ is the operator which selects homogeneous terms of degree m. This given, the following is a

rewriting of Thibon’s proof of I.5 and I.7 in the present notation. We will start with the coefficient

Ck(d) =
〈
sdd[X1]sdd[X2] · · · sdd[Xk] , s2d[X1X2 · · ·Xk]

〉
where the left argument is a k-fold product. Using (1) we can write

Ck(d) =
〈
Ω[X1]Ω⊥[−X1]sd[X1]Ω[X2]Ω⊥[−X2]sd[X2] · · ·Ω[Xk]Ω⊥[−Xk]sd[Xk] , s2d[X1X2 · · ·Xk]

〉
where the role of ‘

∣∣∣
m

’ is played by the scalar product with s2d[X1X2 · · ·Xk]. Thus we also have

Ck(d) =
〈
sd[X1]sd[X2] · · · sd[Xk],Ω[−X1]Ω⊥[X1]Ω[−X2]Ω⊥[X2] · · ·Ω[−Xk]Ω⊥[Xk]s2d[X1X2 · · ·Xk]

〉
=
〈
sd[X1]sd[X2] · · · sd[Xk],Ω[−X1]Ω[−X2] · · ·Ω[−Xk]]s2d[(X1 + 1)(X2 + 1) · · · (Xk + 1)]

〉
=
〈
Ω[u21X1]Ω[u22X2] · · ·Ω[u2kXk],Ω[−X1]Ω[−X2] · · ·Ω[−Xk]]s2d[(X1 + 1)(X2 + 1) · · · (Xk + 1)]

〉∣∣∣∣
u2d
1 u2d

2 ···u
2d
k

= Ω[−u21]Ω[−u22] · · ·Ω[−u2k]]s2d[(u1
2 + 1)(u2

2 + 1) · · · (uk2 + 1)]
〉∣∣∣∣
u2d
1 u2d

2 ···u
2d
k

= Ω[−u21]Ω[−u22] · · ·Ω[−u2k]]s2d[(u1 + 1/u1)(u2 + 1/u2) · · · (uk + 1/uk)]
〉∣∣∣∣
u0
1u

0
2···u

0
k

the second to last step is due to the reproducing property of the Cauchy kernel.

Multiplying by t2d and summing gives∑
d≥0

t2d
〈
sdd ∗ sdd ∗ · · · ∗ sdd , s2d

〉
=

(1− u21)(1− u22) . . . (1− u2k)∏
S⊆[1,k]

(
1− t

∏
i∈S ui

∏
j 6∈S uj

) ∣∣∣∣
u0
1u

0
2···u

0
k

and this is I.5.

Now to get I.7 we start with

Cr1,r2,...,rk(m) =
〈
sm−r1,r1 [X1] · · · sm−rk,rk [Xk], sm[X1X2 · · ·Xk]

〉
=
〈
Ω[v1X1]Ω⊥[−X1/v1]sr1 [X1] · · ·Ω[vkXk]Ω⊥[−Xk/vk]srk [Xk], sm[X1X2 · · ·Xk]

〉∣∣∣∣
v
m−r1
1 ···vm−rk

k

=
〈
sr1 [X1] · · · srk [Xk],Ω[−X1/v1] · · ·Ω[−Xk/vk]sm[(X1 + v1) · · · (Xk + vk)]

〉∣∣∣∣
v
m−r1
1 ···vm−rk

k

=
〈
Ω[u1X1] · · ·Ω[ukXk],Ω[−X1/v1] · · ·Ω[−Xk/vk]sm[(X1 + v1) · · · (Xk + vk)]

〉∣∣∣∣
v
m−r1
1 ···vm−rk

k
u
r1
1 ···u

rk
k

= Ω[−u1/v1] · · ·Ω[−uk/vk]sm[(u1 + v1) · · · (uk + vk)]

∣∣∣∣
v
m−r1
1 ···vm−rk

k
u
r1
1 ···u

rk
k

= Ω[−u1/v1] · · ·Ω[−uk/vk]sm[(u1/v1 + 1) · · · (uk/vk + 1)]

∣∣∣∣
v
−r1
1 ···v−rk

k
u
r1
1 ···u

rk
k

.
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Multiplying by tm(v1/u1)r1 · · · (vk/uk)rk and summing gives

∑
m≥0

tm
∑
r1≥0

· · ·
∑
rk≥0

ir1,...,rk(m)(v1/u1)r1 · · · (vk/uk)rk =

k∏
i=1

(1− ui/vi)Ω[t(u1/v1 + 1) · · · (uk/vk + 1)] .

Making the replacement vi/ui → yi finally gives

∑
m≥0

tm
∑
r1≥0

· · ·
∑
rk≥0

Cr1,...,rk(m)yr11 · · · y
rk
k =

∏k
i=1(1− yi)∏

S⊆[1,k]
(
1− t

∏
i∈S yi

)
as desired.
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2. The explicit formula for sd,d ∗ sd,d

We begin this section with the computation of an auxiliary Kronecker coefficient.

Theorem 2.1
For all pairs a ≥ b, f ≥ e with a+ b = f + e = 2d we have

〈
hahb ∗ sf,e , sd,d

〉
=

{
1 + b b+e−d2 c if b+ f − d ≥ 0
0 otherwise

. 2.1

Proof

Using the second equality in 1.25 we derive that〈
hahb ∗ sf,e , sd,d

〉
=
∑
α`b

〈
sα × s⊥α sf,e , sd,d

〉
=
∑
α`b

〈
s⊥α sf,e , s

⊥
α sd,d

〉
. 2.2

Note that the only terms that contribute to 2.2 are those given by partitions α = (u, v) with

a) u ≤ f ∧ d b) v ≤ e ∧ d c) u+ v = b,

but since from our assumptions it follows that f ≥ d, e ≤ d and b ≤ d it follows that these conditions reduce

to

a) v ≤ e and c) u+ v = b. 2.3

Moreover it is easily seen that for α = (u, v) we have

s⊥α sd,d = sd−v,d−u.

We are thus reduced to the calculation of the scalar products〈
s(e,f)/(u,v) , sd−v,d−u

〉
. 2.4

To better understand our reasoning we need to illustrate the diagrams that are involved in this calculation.

We have here on the left the shaded diagram of the partition (u, v) within the partition (e, f) and

on the right the shaded diagram of (u, v) with the diagram of (d, d). Note that in applying the Littlewood-

Richardson rule to expand the skew Schur function s(e,f)/(u,v) we shall necessarily obtain only diagrams

which start with the partition D = (e − v, e− u) (illustrated on the left below) then end with the diagram

obtained by draping f − e cells on the right of the last cell of the top row of D.

In order for the scalar product in 2.4 to be different from zero we must be able to drape these f − e
cells so as to obtain the diagram of (d − v, d − u), (illustrated above on the right). That is we must place
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d− e cells on the second row of D. However, the maximum number of cells we can place on the top row of

D is e− v − (e− u) = u− v. In conclusion we will be able to obtain (d− v, d− u) if and only if

d− e ≤ u− v .

Since u = b− v this inequality is simply

d− e ≤ b− v − v

or better

v ≤ b+ e− d
2

.

This may be written as

a) v ≤ b b+e−d)2 c or b) v ≤ b e−(d−b)2 c .

Note however that if b + e < d there is no way of producing the diagram of (d − v, d − u) from D and the

sum in the right hand side of 2.2 necessarily vanishes. On the other hand if b+ e ≥ d then since b) is clearly

stronger than 2.3 a) we derive that the number of terms that contribute to the right hand side of 2.3 is

1 + b b+e−d)2 c.

This completes our proof.

As an immediate corollary we obtain that

Theorem 2.2
For all pairs a ≥ b, f ≥ e with a+ b = f + e = 2d we have〈

sa,b ∗ sf,e , sd,d
〉

=
{

1 if b+ e− d ≥ 0 and even
0 otherwise

. 2.5

Proof

Since sa,b = hahb − ha−1hb+1 we derive that〈
sa,b ∗ sf,e , sd,d

〉
=
〈
hahb ∗ sf,e , sd,d

〉
−
〈
ha+1hb−1 ∗ sf,e , sd,d

〉
. 2.6

Now note that if b + e − d < 0 then b − 1 + e − d < 0 as well and 2.1 yields that both terms on the right

hand side of 2.6 necessarily vanish. In case b+ e− d = 2k ≥ 0 then 2.1 gives

1 + b b+e−d)2 c = 1 + k and 1 + b b−1+e−d)2 c = k

and 2.1 gives that 〈
sa,b ∗ sf,e , sd,d

〉
= 1 + k − k = 1.

On the other hand if b+ e− d = 2k + 1 ≥ 1 then

1 + b b+e−d)2 c = 1 + k and 1 + b b−1+e−d)2 c = 1 + k

and 2.1 gives that 〈
sa,b ∗ sf,e , sd,d

〉
= 1 + k − 1− k = 0.
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This completes our proof.

We are finally in a position to prove our desired Schur function expansion of sdd ∗ sdd.
Theorem 2.3

sdd ∗ sdd =
∑
λ`2d

χ(λ ∈ EO4)sλ 2.7

where EO4 denotes the set of partitions of length 4 whose parts are ≥ 0 and all even or all odd.

Proof

From Proposition 1.7 it follows that the Schur function expansion of the Kronecker product sdd ∗sdd
involves Schur functions indexed by partitions with at most four parts, thus we need only to show that when

sλ occurs in the expansion of sdd ∗ sdd
1) if λ has only one positive part, then λ = 2d and

〈
s2d, sdd ∗ sdd

〉
= 1,

2) if λ has only two positive parts, then all those parts are even and
〈
sλ, sdd ∗ sdd

〉
= 1,

3) if λ has only three positive parts, then all its parts are even and
〈
sλ, sdd ∗ sdd

〉
= 1,

4) if λ has four positive parts then its parts are all even or all odd and
〈
sλ, sdd ∗ sdd

〉
= 1.

Now 1) is entirely trivial since〈
s2d , sdd ∗ sdd

〉
=
〈
s2d ∗ sdd , sdd

〉
=
〈
sdd , sdd

〉
= 1.

Next note that Theorem 2.2 with λ = (a, b) (f, e) = (d, d) gives that the scalar product〈
sab ∗ sdd , sdd

〉
=
{

1 if b is even
0 if b is odd

Thus 2) must hold true since 〈
sab , sdd ∗ sdd

〉
=
〈
sab ∗ sdd , sdd

〉
.

For the next two cases we will proceed by induction on d. In fact, note that a simple calculation gives that

s11 ∗ s11 = s2 , s22 ∗ s22 = s4 + s22 + s1111

Thus the assertion is clearly true for d ≤ 2. So we will assume it to be true inductively up to d− 1 ≥ 2.

To prove 3) we use 1.28 b) and write a Schur function indexed by a partition with exactly three > 0

parts in the form

sµ+13 =
∑
i≥0

(−1)ie3+ih
⊥
i sµ

with µ a partition with at most three parts. Thus〈
sµ+13 , sdd ∗ sdd

〉
=
∑
i≥0

(−1)i
〈
e3+ih

⊥
i sµ , sdd ∗ sdd

〉
=
∑
i≥0

(−1)i
〈
h⊥i sµ , e

⊥
3+isdd ∗ sdd

〉
(by Proposition 1.7) =

1∑
i=0

(−1)i
〈
h⊥i sµ , e

⊥
3+isdd ∗ sdd

〉
=
〈
e3sµ , sdd ∗ sdd

〉
−
〈
e4h
⊥
1 sµ , sdd ∗ sdd

〉
(by 1.27 b)) =

∑
α`3

〈
sµ , (s⊥α sdd) ∗ (s⊥α′sdd)

〉
−
∑
β`4

〈
h⊥1 sµ , (s⊥β sdd) ∗ (s⊥β′sdd)

〉
.

2.8
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Since the only α ` 3 such that both s⊥α sdd and s⊥α′sdd are different from zero is α = (2, 1) and likewise the

only β ` 4 such that both s⊥β sdd and (s⊥β′sdd) are different from zero is β = (2, 2), it follows from 2.8 that〈
sµ+13 , sdd ∗ sdd

〉
=
〈
sµ , (s⊥21sdd) ∗ (s⊥21sdd)

〉
−
〈
h⊥1 sµ , (s⊥22sdd) ∗ (s⊥22sdd)

=
〈
sµ , (e⊥1 sd−1,d−1) ∗ (e⊥1 sd−1,d−1)

〉
−
〈
h⊥1 sµ , sd−2,d−2 ∗ sd−2d−2)

=
〈
e1sµ , sd−1,d−1 ∗ sd−1,d−1

〉
−
〈
h⊥1 sµ , sd−2,d−2 ∗ sd−2d−2) .

2.9

This given, note that µ can only be of the following four types

(a, a, a) , (a, a, b) , (a, b, b) , (a, b, c) , 2.10

with a > b > c. Now from 2.9 we derive that〈
s(a+1,a+1,a+1) , sdd ∗ sdd

〉
=
〈
e1saaa , sd−1,d−1 ∗ sd−1,d−1

〉
−
〈
h⊥1 saaa , sd−2,d−2 ∗ sd−2d−2

〉
=
〈
(saaa1 + sa+1,a,a) , sd−1,d−1 ∗ sd−1,d−1

〉
−
〈
sa,a,a−1 , sd−2,d−2 ∗ sd−2d−2

〉
(by induction) =

〈
saaa1 , sd−1,d−1 ∗ sd−1,d−1

〉
and the inductive hypothesis forces a to be odd and (a+ 1, a+ 1, a+ 1) to have all even parts. In the second

case of 2.10, 2.9 gives〈
s(a+1,a+1,b+1) , sdd ∗ sdd

〉
=
〈
e1saab , sd−1,d−1 ∗ sd−1,d−1

〉
−
〈
h⊥1 saab , sd−2,d−2 ∗ sd−2d−2

〉
=
〈
(saab1 + sa,a,b+1 + sa+1,a,b) , sd−1,d−1 ∗ sd−1,d−1

〉
−
〈
(sa,a,b−1 + sa,a−1,b) , sd−2,d−2 ∗ sd−2d−2

〉
(by induction) =

〈
(saab1 + sa,a,b+1) , sd−1,d−1 ∗ sd−1,d−1

〉
−
〈
sa,a,b−1 , sd−2,d−2 ∗ sd−2d−2

〉
.

2.11

If a and b are of different parity the inductive hypothesis reduces this to〈
s(a+1,a+1,b+1) , sdd ∗ sdd

〉
=
〈
sa,a,b+1 , sd−1,d−1 ∗ sd−1,d−1

〉
−
〈
sa,a,b−1 , sd−2,d−2 ∗ sd−2d−2

〉
but again the inductive hypothesis forces both a, b+ 1 to be even as well as〈

s(a+1,a+1,b+1) , sdd ∗ sdd
〉

= 1 − 1 = 0.

This leaves as the only possibility that a and b have the same parity. But then the inductive hypothesis

reduces 2.11 to 〈
s(a+1,a+1,b+1) , sdd ∗ sdd

〉
=
〈
saab1 , sdd ∗ sdd

〉
and the inductive hypothesis forces a, b to be both odd, thus (a+ 1, a+ 1, b+ 1) to be all even and〈

s(a+1,a+1,b+1) , sdd ∗ sdd
〉

= 1.

In the third case 2.11 gives〈
s(a+1,b+1,b+1) , sdd ∗ sdd

〉
=
〈
(sabb1 + sa,b+1,b + sa+1,b,b) , sd−1,d−1 ∗ sd−1,d−1

〉
−
〈
(sa,b,b−1 + sa−1,b,b) , sd−2,d−2 ∗ sd−2d−2

〉
(by induction) =

〈
(sabb1 + sa+1,b,b) , sd−1,d−1 ∗ sd−1,d−1

〉
−
〈
sa−1,b,b , sd−2,d−2 ∗ sd−2d−2

〉
.

2.12



Kronecker Coefficients A. Garsia, N. Wallach, G. Xin, & M. Zabrocki September 27, 2010 19

Now if a, b have different parity this reduces to

〈
s(a+1,b+1,b+1) , sdd ∗ sdd

〉
=
〈
sa+1,b,b , sd−1,d−1 ∗ sd−1,d−1

〉
−
〈
sa−1,b,b , sd−2,d−2 ∗ sd−2d−2

〉
and the inductive hypothesis yields that both terms vanish if a is even and b is odd. On the other hand if a

is odd and b is even the inductive hypothesis gives

〈
s(a+1,b+1,b+1) , sdd ∗ sdd

〉
= 1 − 1 = 0 .

If a and b have the same parity 2.12 reduces to

〈
s(a+1,b+1,b+1) , sdd ∗ sdd

〉
=
〈
sabb1 , sd−1,d−1 ∗ sd−1,d−1

〉
and the inductive hypothesis forces a and b to be both odd thus (a+ 1, b+ 1, b+ 1) to be even and

〈
s(a+1,b+1,b+1) , sdd ∗ sdd

〉
= 1 .

Finally, for the last case of 2.10, 2.9 gives〈
s(a+1,b+1,c+1) , sdd ∗ sdd

〉
=
〈
(sabc1 + sa,b,c+1 + sa,b+1,c + sa+1,b,c) , sd−1,d−1 ∗ sd−1,d−1

〉
−
〈
(sa,b,c−1 + sa,b−1,c + sa−1,b,c) , sd−2,d−2 ∗ sd−2d−2

〉
.

2.13

If a, b and c+ 1 have the same parity, the inductive hypothesis reduces 2.13 to

〈
s(a+1,b+1,c+1) , sdd ∗ sdd

〉
=
〈
sa,b,c+1 , sd−1,d−1 ∗ sd−1,d−1

〉
−
〈
sa,b,c−1 , sd−2,d−2 ∗ sd−2d−2

〉
= 1− 1 = 0 .

If a, b+ 1 and c have the same parity, the inductive hypothesis reduces 2.13 to

〈
s(a+1,b+1,c+1) , sdd ∗ sdd

〉
=
〈
sa,b+1,c , sd−1,d−1 ∗ sd−1,d−1

〉
−
〈
sa,b−1,c , sd−2,d−2 ∗ sd−2d−2

〉
= 1− 1 = 0 .

If a+ 1, b and c have the same parity, the inductive hypothesis reduces 2.13 to

〈
s(a+1,b+1,c+1) , sdd ∗ sdd

〉
=
〈
sa+1,b,c , sd−1,d−1 ∗ sd−1,d−1

〉
−
〈
sa−1,b,c , sd−2,d−2 ∗ sd−2d−2

〉
= 1− 1 = 0 .

If a, b and c have the same parity, the inductive hypothesis reduces 2.13 to

〈
s(a+1,b+1,c+1) , sdd ∗ sdd

〉
=
〈
sabc1 , sdd ∗ sdd

〉
= 1

with (a, b, c) all odd and thus (a+ 1, b+ 1, c+ 1) all even.

This completes the proof of 3). To prove 4) we note that 1.28 b) yields that we may write sλ in the

form

sλ =
∑
i≥0

(−1)ie4+ih
⊥
i sµ



Kronecker Coefficients A. Garsia, N. Wallach, G. Xin, & M. Zabrocki September 27, 2010 20

with µ a partition with no more than four parts. Thus〈
sλ , sdd ∗ sdd

〉
=
∑
i≥0

(−1)i
〈
e4+ih

⊥
i sµ , sdd ∗ sdd

〉
(by Proposition 1.7) =

〈
e4sµ , sdd ∗ sdd

〉
(by 1.27 b)) =

∑
α`4

〈
sµ , (s⊥α sdd) ∗ (s⊥α′sdd)

〉
.

2.14

But now again the only α ` 4 for which both factors s⊥α sdd and s⊥α′sdd do not vanish is α = (2, 2). This

reduces 2.14 to 〈
sλ , sdd ∗ sdd

〉
=
〈
sµ , (s⊥22sdd) ∗ (s⊥22sdd)

〉
=
〈
sµ , sd−2,d−2 ∗ sd−2,d−2

〉
and the inductive hypothesis yields that this vanishes unless all parts of µ are even or equivalently all parts

of λ are odd and in this case 〈
sλ , sdd ∗ sdd

〉
= 1.

This completes the proof of the Theorem.

3. Kronecker coefficients for two part partitions
The identity of Theorem 2.2 namely,〈

sa,b ∗ sf,e , sd,d
〉

=
{

1 if b+ e− d ≥ 0 and even
0 otherwise

,

has a more general form that may be stated as follows.

Theorem 3.1
For given integers r1 ≥ r2 ≥ r3 ≥ 0 set

Φr1,r2,r3(q) =
∑

m≥2max(r1,r2,r3)

qm
〈
sm−r1,r1 ∗ sm−r2,r2 ∗ sm−r3,r3 , sm

〉
. 3.1

Provided r2 + r3 ≥ r1 we have

Φr1,r2,r3(q) =
q2r1

(1− q)(1− q2)

 1− qr2+r3−r1+2 if r1 + r2 + r3 is even

q − qr2+r3−r1+2 if r1 + r2 + r3 is odd

, 3.2

otherwise Φr1,r2,r3(q) vanishes identically.
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The developments that led to a proof of this identity and the mathematics that resulted from it may

be as interesting as the result itself. The discovery that the generating function

Gk(y1, y2, . . . , yk; q) =
∑
m≥0

qm
∑
r1≥0

∑
r2≥0

· · ·
∑
rk≥0

yr11 y
r2
2 · · · y

rk
k

〈
sm−r1,r1 ∗ sm−r2,r2 ∗ · · · ∗ sm−rk,rk , sm

〉
3.3

has the simple form

Gk(y1, y2, . . . , yk; q) =

∏k
i=1(1− yi)∏

S⊆[1,k](1− q
∏
i∈S yi)

= Ω
[
q(1 + y1)(1 + y2) · · · (1 + yk)

]∏k
i=1(1− yi) 3.4

suggested that we should be able to extract from it explicit expressions for the generating functions

Φr1,r2,...,rk(q) =
∑

m≥2max(r1,r2,...,rk)

qm
〈
sm−r1,r1 ∗ sm−r2,r2 ∗ · · · ∗ sm−rk,rk , sm

〉
3.5

As a starting step we should be able to extract from 3.3 the terms where all the Schur functions have partition

indexing. That means getting the sub-series where m ≥ 2max(r1, r2, . . . , rk). Now we can do this again by

resorting to a trick from MacMahon partition analysis. More precisely we have the following recipes.

Proposition 3.1
Let

G(y1, y2, . . . , yk; q) =
∑
m≥0

qm
∑
r1≥0

∑
r2≥0

· · ·
∑
rk≥0

yr11 y
r2
2 · · · y

rk
k cr1,r2,...,rk(m) , 3.6

then∑
m≥0

qm
∑bm2 c
r1=0

∑bm2 c
r2=0 · · ·

∑bm2 c
rk=0 y

r1
1 y

r2
2 · · · y

rk
k cr1,r2,...,rk(m) = G

(
y1
a21
, y2
a22
, . . . , yk

a2
k

; qa1a2 · · · an
)∣∣∣∣
a
≥
1 a
≥
2 ···a

≥
k

3.7

where the symbol ‘ a≥i ’ represents the operator that selects all the terms where ai appears to a non-negative

power and then setting all ai = 1. In the same vein, we also have∑
r1≥r2≥···≥rk

∑
m≥2r1

qmyr11 y
r2
2 · · · y

rk
k cr1,r2,...,rk(m) = G

(
y1a1
a20

, y2a2a1
, . . . , yk

ak−1
; qa0

)∣∣∣∣
a
≥
0 a
≥
1 ···a

≥
k−1

3.8

and of course in this manner we can also derive formula 1.1 that is

Wk(q) =
∑
d≥0

q2dcd,d,...,d(2d) = G
(

1
a21
, 1
a22
, . . . , 1

a2
k

; q a1a2 · · · an
)∣∣∣∣
a01a

0
2···a

0
k

. 3.9

Proof

Note that from 3.6 it follows that

G
(y1
a21
,
y2
a22
, . . . ,

yk
a2k

; qa1a2 · · · an
)

=
∑
m≥0

qm
∑
r1≥0

∑
r2≥0

· · ·
∑
rk≥0

yr11 y
r2
2 · · · y

rk
k cr1,r2,...,rk(m) am−2r11 am−2r22 · · · am−2rkk
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and the operator ‘
∣∣∣
a
≥
1 a
≥
2 ···a

≥
k

’ will carry out the desired selection. The same can be seen from the following

identity

G
(
y1a1
a20

, y2a2a1
, . . . , yk

ak−1
; qa0

)
=
∑
m≥0

qm
∑
r1≥0

∑
r2≥0

· · ·
∑
rk≥0

yr11 y
r2
2 · · · y

rk
k cr1,r2,...,rk(m) am−2r10 ar1−r22 · · · ark−1−rk

k−1 .

Likewise we can easily see that 3.9 can be obtained,by the constant term operator ‘
∣∣∣
a01a

0
2···a

0
k

,’ from the

identity

G
(

1
a21
, 1
a22
, . . . , 1

a2
k

; q a1a2 · · · an
)

=
∑
m≥0

qm
∑
r1≥0

∑
r2≥0

· · ·
∑
rk≥0

cr1,r2,...,rk(m) am−2r11 am−2r22 · · · am−2rkk .

Armed with these tools the following two results were obtained in a matter of seconds from the

MAPLE package of G. Xin (called ELL2.mpl)

Theorem 3.2
If we set

F3(y1, y2, y3; q) =
∑
r1≥0

∑
r2≥0

∑
r3≥0

∑
m≥2max(r1,r2,r3)

qmyr11 y
r2
2 y

r3
3

〈
sm−r1,r1 ∗ sm−r2,r2 ∗ sm−r3,r3 , sm

〉
3.10

and

G3(y1, y2, y3; q) =
∑
r3≥0

∑
r2≥r3

∑
r1≥r2

∑
m≥2r1

qmyr11 y
r2
2 y

r3
3

〈
sm−r1,r1 ∗ sm−r2,r2 ∗ sm−r3,r3 , sm

〉
, 3.11

then

F3(y1, y2, y3; q) =
1 + q3y1y2y3

(1− q)(1− q2y1y2)(1− q2y1y3)(1− q2y2y3)(1− q4y21y22y23)
3.12

and

G3(y1, y2, y3; q) =
1

(1− q)(1− q2y1y2)(1− q3y1y2y3)(1− q4y21y2y3)(1− q4y21y22y23)
. 3.13

Either of these two identities yield as Corollary

A Proof of Theorem 3.1

The easiest proof of 3.2 is obtained from 3.11. We start with deriving from 3.13 that

G3(y1, y2, y3; q) =
1

(1− q)
∑
a≥0

∑
b≥0

∑
c≥0

∑
d≥0

q2a+3b+4c+4d(y1y2)a(y1y2y3)b(y21y2y3)c(y21y
2
2y

2
3)d

=
1

(1− q)
∑
a≥0

∑
b≥0

∑
c≥0

∑
d≥0

q2a+3b+4c+4dya+b+2c+2d
1 ya+b+c+2d

2 yb+c+2d
3 .

3.14

Since by definition

Φr1,r2,r3(q) = G3(y1, y2, y3; q)

∣∣∣∣
y
r1
1 y

r2
2 y

r3
3



Kronecker Coefficients A. Garsia, N. Wallach, G. Xin, & M. Zabrocki September 27, 2010 23

we need to solve for a, b, c, d in the system of equations

a+ b+ 2c = r1 − 2d
a+ b+ c = r2 − 2d
b+ c = r3 − 2d .

3.15

Now subtracting the second from the first and the third from the second gives

c = r1 − r2 and a = r2 − r3 3.16

and consequently

b = r3 − 2d− (r1 − r2) = r2 + r3 − r1 − 2d . 3.17

This shows that there are no solutions if r2 + r3 < r1 proving the last assertion of the Theorem. Moreover,

since b ≥ 0 we must also require that 2d ≤ r2 + r3 − r1. Thus, when r2 + r3 ≥ r1 from 3.14 we derive that

Φr1,r2,r3(q) =
1

(1− q)

(r2+r3−r1)/2∑
d=0

q2(r2−r3)+3(r2+r3−r1−2d)+4(r1−r2)+4d

=
1

(1− q)

(r2+r3−r1)/2∑
d=0

q2r2−2r3+3r2+3r3−3r1−6d)+4r1−4r2+4d

=
q2r1

(1− q)


∑k
d=0 q

2k−2d if r2 + r3 − r1 = 2k∑k
d=0 q

2k+1−2d if r2 + r3 − r1 = 2k + 1

=
q2r1

(1− q)(1− q2)

 1− q2k+2 if r2 + r3 − r1 = 2k

q(1− q2k+2) if r2 + r3 − r1 = 2k + 1
.

This proves 3.2.

If we believe in computers and more significantly we believe in the validity of the MAPLE software

that yielded 3.13, then Theorem 3.1 is well and done. But for some of us there is something purely emotional

that makes it unsatisfactory to have only a computer proof of a Mathematical result. Thus for the benefit of

the reader who prefers human proofs, we will indulge in all the manipulations that are necessary to derive

both 3.12 and 3.13 almost entirely by hand.

We will begin by deriving 3.12 from 3.11. To this end note that the proof of Theorem 3.1 yields a

significant byproduct

Proposition 3.2
If we set

G
(1)
3 (y1, y2, y3; q) =

∑
r3≥0

∑
r2≥r3

∑
r1>r2

∑
m≥2r1

qmyr11 y
r2
2 y

r3
3

〈
sm−r1,r1 ∗ sm−r2,r2 ∗ sm−r3,r3 , sm

〉
3.18

G
(2)
3 (y1, y2, y3; q) =

∑
r3≥0

∑
r2>r3

∑
r1≥r2

∑
m≥2r1

qmyr11 y
r2
2 y

r3
3

〈
sm−r1,r1 ∗ sm−r2,r2 ∗ sm−r3,r3 , sm

〉
3.19
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G
(1,2)
3 (y1, y2, y3; q) =

∑
r3≥0

∑
r2>r3

∑
r1>r2

∑
m≥2r1

qmyr11 y
r2
2 y

r3
3

〈
sm−r1,r1 ∗ sm−r2,r2 ∗ sm−r3,r3 , sm

〉
3.20

then

G
(1)
3 (y1, y2, y3; q) =

q4y21y2y3
(1− q)(1− q2y1y2)(1− q3y1y2y3)(1− q4y21y2y3)(1− q4y21y22y23)

3.21

G
(2)
3 (y1, y2, y3; q) =

q2y1y2
(1− q)(1− q2y1y2)(1− q3y1y2y3)(1− q4y21y2y3)(1− q4y21y22y23)

3.22

G
(1,2)
3 (y1, y2, y3; q) =

q2y1y2 × q4y21y2y3
(1− q)(1− q2y1y2)(1− q3y1y2y3)(1− q4y21y2y3)(1− q4y21y22y23)

. 3.23

Proof

We saw in 3.16 that to assure that r1 > r2 we need only take c ≥ 1 in 3.12. That proves 3.21.

Similarly to assure r2 > r3 we need only take a ≥ 1 in 3.12. That proves 3.22. Finally, we see that taking

both a ≥ 1 and c ≥ 1 in 3.14 assures both inequalities r1 > r2 > r3. This proves 3.23 and completes our

argument.

Now we have exactly what we need to show

Proposition 3.3
The validity of 3.13 forces the validity of 3.12

Proof

The sum in 3.10 is over all lattice triplets r1, r2, r3 that lie in the positive octant. Now it is well

known in combinatorics that the lattice k-tuples r1, r2, . . . , rk in the positive octant of k-dimensional space,

decomposes into k! disjoint simplicial cones indexed by permutations σ ∈ Sk. More precisely the cone Cσ

consists of the collection of triplets

Cσ =
{

(r1, r2, . . . , rk) : rσi ≥ rσi+1
with rσi > rσi+1

when σi > σi+1

}
.

In particular the lattice triplets r1, r2, r3 that lie in the positive octant will decompose into the 6 cones

C123 = {(r1, r2, r3) : r1 ≥ r2 ≥ r3 }, C132 = {(r1, r2, r3) : r1 ≥ r3 > r2 },

C213 = {(r1, r2, r3) : r2 > r1 ≥ r3 }, C231 = {(r1, r2, r3) : r2 ≥ r3 > r1 },

C312 = {(r1, r2, r3) : r3 > r1 ≥ r2 }, C321 = {(r1, r2, r3) : r3 > r2 > r1 }.

This given, the summation in 3.10 can be accordingly decomposed, and we obtain from that

F3(y1, y2, y3; q) =
∑
σ∈S3

F
(σ)
3 (y1, y2, y3; q) 3.24

where for convenience we have set

F
(σ)
3 (y1, y2, y3; q) =

∑
(r1,r2,r3)∈Cσ

∑
m≥2max(r1,r2,r3)

qmyr11 y
r2
2 y

r3
3

〈
sm−r1,r1 ∗ sm−r2,r2 ∗ sm−r3,r3 , sm

〉
.
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Now it immediately follows from Proposition 3.2 that

F
(123)
3 (y1, y2, y3; q) = G3(y1, y2, y3; q) , F

(132)
3 (y1, y2, y3; q) = G

(2)
3 (y1, y3, y2; q) ,

F
(213)
3 (y1, y2, y3; q) = G

(1)
3 (y2, y1, y3; q) , F

(231)
3 (y1, y2, y3; q) = G

(2)
3 (y2, y3, y1; q) ,

F
(312)
3 (y1, y2, y3; q) = G

(1)
3 (y3, y1, y2; q) , F

(321)
3 (y1, y2, y3; q) = G

(1,2)
3 (y3, y2, y1; q) .

Carrying out these substitutions gives

F
(123)
3 =

1

(1− q2y1y2)(1− q3y1y2y3)(1− q4y21y2y3)(1− q4y21y22y23)
,

F
(132)
3 =

q2y1y3
(1− q2y1y3)(1− q3y1y2y3)(1− q4y21y2y3)(1− q4y21y22y23)

,

F
(213)
3 =

q4y22y1y3
(1− q2y1y2)(1− q3y1y2y3)(1− q4y22y1y3)(1− q4y21y22y23)

,

F
(231)
3 =

q2y2y3
(1− q2y2y3)(1− q3y1y2y3)(1− q4y22y1y3)(1− q4y21y22y23)

,

F
(312)
3 =

q4y23y1y2
(1− q2y1y3)(1− q3y1y2y3)(1− q4y23y1y2)(1− q4y21y22y23)

,

F
(321)
3 =

q6y33y
2
2y1

(1− q2y2y3)(1− q3y1y2y3)(1− q4y23y1y2)(1− q4y21y22y23)
.

Carrying out the sum in 2.24 by hand is a bit tedious. But miraculously, given the presence of so many

unwanted denominators, MAPLE still was able to factor the resulting sum to

1 + q3y1y2y3
(1− q)(1− q2y1y2)(1− q2y1y3)(1− q2y2y3)(1− q4y21y22y23)

as desired. The reader is welcome to verify this by hand.

To complete the proof of Theorems 3.1 and 3.2 we are thus left with proving the identity in 3.11.

Our proof of 3.13 uses the partial fraction algorithm of G. Xin. For the benefit of the reader who is not

familiar with this computational device the proof will be preceded by a derivation of the basic tools of the

algorithm and thus will be postponed until next section.

But before closing this section, we must add that we have tried Xin’s partial fraction software to

obtain the generating function

F4(y1, y2, y3, y4; q) =
∑
r4≥0

∑
r3≥r4

∑
r2≥r3

∑
r1≥r2

∑
m≥2r1

qmyr11 y
r2
2 y

r3
3 y

r4
4

〈
sm−r1,r1 ∗ · · · ∗ sm−r4,r4 , sm

〉
3.25

using the identity

F4(y1, y2, y3, y4; q) = G4

(
y1a1
a20

, y2a2a1
, y3a3a2

, y4a3 ; qa0
)∣∣∣∣
a
≥
0 a
≥
1 a
≥
2 a
≥
3
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with

G4(y1, y2, y3, y4; q) =

∏4
i=1(1− yi)∏

S⊆[1,4](1− q
∏
i∈S yi)

. 3.26

The software in a matter of minutes produced the desired generating function. Unfortunately the result lacked

the sheer beauty and simplicity of F3(y1, y2, y3; q) as given by 3.12. In fact, F4(y1, y2, y3, y4; q) turns out to

have an extremely large numerator containing more than 3000 terms. This circumstance not withstanding,

it is still possible that this generating function may have an elegant expression as a sum of simple terms.

Indeed, there is plentiful computational evidence that shows that a sum of simple rational fractions can have

horrendous expressions when written as a single rational fraction with the least common denominator.

We must add that, if our desire is to obtain the generating functions

Φr1,r2,...,rk(q) =
∑

m≥2max(r1,r2,...,rk)

qm
〈
sm−r1,r1 ∗ sm−r2,r2 ∗ · · · ∗ sm−rk,rk , sm

〉
, 3.27

then they can be obtained by a two step procedure. The first step is to extract the coefficient

Ψr1,r2,...,rk(q) =

∏k
i=1(1− yi)∏

S⊆[1,k](1− q
∏
i∈S yi)

∣∣∣∣
y
r1
1 y

r2
2 ···y

rk
k

, 3.28

and the next step is to obtain Φr1,r2,...,rk(q) by extracting from Ψr1,r2,...,rk(q) all the terms where m <

2 max(r1, r2, . . . , rk). This extraction is also easy to carry out. In fact, note that we may write

Ψr1,r2,...,rk(q) =
Pr1,r2,...,rk(q)

1− q

with

Pr1,r2,...,rk(q) =

∏k
i=1(1− yi)∏

φ6=S⊆[1,k](1− q
∏
i∈S yi)

∣∣∣∣
y
r1
1 y

r2
2 ···y

rk
k

3.29

an ordinary polynomial. To obtain 3.27 from 3.28 we can use the algorithm given by the following Proposition.

Proposition 3.4
Let

F (q) =
P (q)

1− q
=

∑
m≥0

cmq
m 3.30

with P (q) a polynomial. Then the rational functions

FR(q) =
∑
m≥R

cmq
m

satisfy the recursion

FR(q) =
∑
m≥R

P (q)
∣∣∣
qm
qm + qFR−1(q) 3.31

with initial condition F0(q) = F (q).

Proof
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Note that from 3.30 we derive that

cm = P (q)
∣∣∣
qm

+ cm−1 3.32

Thus ∑
m≥R

cmq
m =

∑
m≥R

P (q)
∣∣∣
qm
qm +

∑
m≥R

cm−1q
m

and 3.31 follows if we adopt the convention that cs = 0 when s < 0.

We derive from this the following surprising fact already noticed by Murnaghan [9] in the case of

triple Kronecker products. See also the variety of Kronecker coefficient identities derived by Scharf, Thibon

and Wybourne in [10].

Theorem 3.3
For any given r1, r2, . . . , rk the Kronecker coefficient

〈
sm−r1,r1 ∗ sm−r2,r2 ∗ · · · ∗ sm−rk,rk , sm

〉
stabilizes after a finite number of terms and the stable value is given by the coefficient

Pr1,r2,...,rk(1) =

∏k
i=1(1− yi)∏

φ 6=S⊆[1,k](1−
∏
i∈S yi)

∣∣∣∣
y
r1
1 y

r2
2 ···y

rk
k

.

Proof

We see from 3.32 that we will have cm = cm−1 as soon as m becomes greater than the degree of

P (q). This given, we may simply compute the stable value of cm from 3.30. By taking the limit

lim
q→1

(1− q)F (q) = P (1) .

Thus the assertion follows from 3.29.

For example we calculated in this manner the rational function φ2,3,4,2,3(q) and obtained first that

ψ2,3,4,2,3(q) =
−9q6 + 9q7 + 144q8 + 197q9 + 154q10 + 71q11 + 25q12 + 5q13 + q14

1− q
.

This then yielded

φ2,3,4,2,3(q) =
144q8 + 197q9 + 154q10 + 71q11 + 25q12 + 5q13 + q14

1− q

whose series expansion is

144q8+341q9+495q10+566q11+591q12+596q13+597q14+597q15+597q16+597q17+597q18+597q19+O(q20) .

In particular this gives that〈
sm−2,2 ∗ sm−3,3 ∗ sm−4,4 ∗ sm−2,2 ∗ sm−3,3 , sm

〉
= 597

for all m ≥ 14.
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4. The partial fraction algorithm
To complete the proof of Theorems 3.1 and 3.2 we are left with proving the identity in 3.11. We

will do this, via Proposition 3.1. More precisely, we plan to obtain the generating function

G(y1, y2, y3; q) =
∑
m≥2r1

∑
r1≥r2≥r3≥0

qmyr11 y
r1
2 y

r3
3

〈
sm−r1,r1 ∗ sm−r2,r2 ∗ sm−r3,r3 , sm

〉
4.1

from the series

F (y1, y2, y3; q) =
(1− y1)(1− y2)(1− y3)

(1− q)(1− qy1)(1− qy2)(1− qy3)(1− qy1y2)(1− qy1y3)(1− qy2y3)(1− qy1y2y3)

by the formula

G(y1, y2, y3; q) = F (y1a1/a
2, y2a2/a1, y3/a2; qa)

∣∣∣
a≥a

≥
1 a
≥
2

. 4.2

At the moment, the best tool we have in our possession is the partial fraction algorithm of G. Xin [13].

Since many of the computer results presented here were obtained by software implementing this algo-

rithm and we will also use later for another hand computation, it will be good to include a brief introduction

to its basics.

Firstly, to avoid ordinary convergence problems we need to work in the field of iterated formal

Laurent series. The definition of this field is recursive and is determined by a chosen total order of all the

variables appearing in our given ‘kernel’ Ω. In the applications we are to compute the constant term (usually

denoted Ω=0) or a positive term (usually denoted Ω≥0). To be precise these two operations will involve only

a specific subset of the variables. Denoting this subset a1, a2, . . . , ak, here we use the notations Ω
∣∣
a01a

0
2···a0n

and Ω
∣∣
a
≥0
1 a

≥0
2 ···a

≥0
k

respectively. The first operation consists in expanding Ω as a formal iterated Laurent

series and selecting the terms that do not contain any of the variables a1, a2, . . . , ak. This is done by a

succession of one variable constant term extractions. To compute the operator Ω
a
≥0
1 a

≥0
2 ···a

≥0
k

, we again start

with the expansion of Ω as a formal iterated Laurent series and proceed with k successive steps. But here,

at the time we operate on the variable ai we delete all the terms which contain ai to a negative exponent

and then set ai = 1 in the remaining terms.

It should be emphasized that, in either case, it is not a good strategy to decide before hand in

which order the variables a1, a2, . . . , ak are to be operated upon. The reason for this is that, it is difficult to

predict before hand the nature of the rational function remaining after each successive step. Yet as we shall

see, there are criteria, based on the nature of this rational function, that suggest which variable should be

operated upon in the next step in order to achieve the simplest and shortest path to the final answer. This

will be illustrated in the specific calculations we will carry out.

Supposing that our variables, in the chosen total order, are x1, x2, . . . , xn. Then, for a given field of

scalars K the initial field is K((x1)) consisting of formal Laurent series in x1 with coefficients in K, that is

the series in which x1 appears with a negative exponent only in a finite number of terms. In symbols

K((x1)) =
{ ∑
m≥M

amx
m
1 : am ∈ K

}
.

This given, recursively we define the field of iterated Laurent series K((x1))((x2)) · · · ((xn)) to be the field

of formal Laurent series in xn with coefficients in K((x1))((x2)) · · · ((xn−1)). The fundamental fact is
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that the total order allows us to imbed the field of rational functions K(x1, x2, . . . , xn) as a subfield of

K((x1))((x2)) · · · ((xn)). We shall only describe here how this imbedding is carried out but leave all the

matters of consistency to the original works [13], [14]. The important fact is that under this imbedding all

the identities in K(x1, x2, . . . , xn) become identities in K((x1))((x2)) · · · ((xn)).

We will begin with the recipe for converting each rational function in the given variables into a

formal Laurent series. The rational functions we will work with here may all be written in the form

F =
P

(1−m1)(1−m2) · · · (1−mn)

with P a Laurent polynomial and m1,m2, . . . ,mk monomials. Our first need is to be able to decide whether

a given factor 1
1−mi should be converted to

a)
∑
s≥0

ms
i or b) −

∑
s≥1

1

ms
i

(
=
− 1
m1

1− 1
m1

)
The decision is based on the idea that the total order forces one of the two ‘formal’ inequalities mi < 1 or

mi > 1 to be true. In the first case, we choose a) (the ‘ordinary form’) and in the second case, we choose b)

(the ‘dual form’). The criterion is as follows: we scan through the variables occurring in the monomial mi.

If the smallest variable has positive exponent, then mi < 1. If it has negative exponent, then mi > 1.

For simplicity of notation we will avoid using summations and simply rewrite the given rational

function in the form

F = P ×
( ∏
mi<1

1

1−mi

)
×
( ∏
mj>1

− 1
mj

1− 1
mj

)
. 4.3

We shall refer to this symbolic expression as the ‘proper form’ of F .

To compute F
∣∣
a01a

0
2···a

0
k

as well as F
∣∣
a
≥
1 a
≥
2 ···a

≥
k

by the partial algorithm of G. Xin (see [13], [14]), at

each step we use a partial fraction expansion to eliminate one of the variables a1, a2, . . . , ak.

To see how this is done, assume that to begin we have chosen to eliminate the variable x. This

given, by suitable manipulations we rewrite our rational function in the form

F = Q(x) +
R(x)

(1− xU1) · · · (1− xUh)(x− V1) · · · (x− Vk)

with Q(x) a Laurent polynomial, R(x) a polynomial of degree less than h+ k and U1, U2, . . . , Uh as well as

V1, V2, . . . , Vk are monomials not containing x. The nature of the denominator will be determined by the

requirement that

xUi < 1 for 1 ≤ i ≤ h and Vj/x < 1 for 1 ≤ j ≤ k.

The next step is to derive the partial fraction expansion:

F = Q(x) +

h∑
i=1

Ai
(1− xUi)

+

k∑
j=1

Bj
(x− Vj)

4.4
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which, as customary, is obtained by setting

Ai = (1− xUi)(F (x)−Q(x))
∣∣∣
x=1/U1

and Bj = (x− Vj)(F (x)−Q(x))
∣∣∣
x=Vj

.

This immediately yields the equalities

F
∣∣∣
x0

= Q(x)
∣∣∣
x0

+

h∑
i=1

Ai 4.5

as well as

F
∣∣∣
x≥

= Q(x)
∣∣∣
x≥0

+

h∑
i=1

Ai
(1− Ui)

. 4.6

The reason for this is that each term
Bj
x−Vj in 4.4 comes from a monomial m < 1 in 4.3 which had the

factorization m = Vj/x, so that the proper form of the last summation in 4.4 will be

k∑
j=1

Bj/x

(1− Vj/x)

and we see that the corresponding series contains only negative powers of x and thus yields no contribution

to either F
∣∣∣
x0

or F
∣∣∣
x≥

.

To help decide which variable must be operated on at the ith step, the next two Propositions show

that there are alternate ways to express the same result.

Proposition 4.1
Suppose that the mi are distinct monomials not containing x, and that F is a rational function of x

with partial fraction decomposition

F (x) = P (x) +

k∑
i=1

Ai
x−mi

where P (x) is a polynomial and Ai = F (x)(x−mi)
∣∣
x=ai

, then

a) F (x)
∣∣∣
x0

= P (0) −
∑

x/mi<1

Ai/mi = F (0) +
∑

x/mi>1

Ai/mi

b) F (x)
∣∣∣
x≥

= P (1) +
∑

x/mi<1

Ai
1−mi

= F (1) −
∑

x/mi>1

Ai
1−mi

4.7

Of course for b) we must assume that none of the mi is equal to 1.

Proof

The proper form of F (x) is

F (x) = P (x) +
∑

x/mi<1

−Ai/mi

1− x/mi
+

∑
x/mi>1

Ai/x

1−mi/x
.
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Thus both results follow from the same reasons as before. For the two alternate forms we simply use the

two identities
F (0) = P (0) −

∑
x/mi<1

Ai/mi −
∑

x/mi>1

Ai/mi

F (1) = P (1) +
∑

x/mi<1

Ai
1−mi

+
∑

x/mi>1

Ai
1−mi

.

In some applications we may need to operate on a kernel given in the form

F (x) =
P (x)∏n

i=1(1− (x/mi)ei)
(with ei ± 1). 4.8

Though it can be converted in the form given by 4.4 it is convenient to have an answer that may be directly

obtained from this form.

Proposition 4.2
Suppose that F (x) is given by 4.8 with the mi monomials not containing x. Suppose further that

lim
x→0

F (x) = 0. 4.9

Then

F (x)
∣∣∣
x0

=
∑

x/mj<1

ej

(
F (x)(1−

(
x
mj

)ej)∣∣∣
x=mj

= −
∑

x/mj>1

ej

(
F (x)(1−

(
x
mj

)ej)∣∣∣
x=mj

4.10

F (x)
∣∣∣
x≥

=
∑

x/mj<1

ej
−mj

1−mj

(
F (x)(1−

(
x
mj

)ej)∣∣∣
x=mj

= F (1)+
∑

x/mj>1

ej
mj

1−mj

(
F (x)(1−

(
x
mj

)ej)∣∣∣
x=mj

. 4.11

Proof

The hypothesis in 4.9 assures that F (x) has a partial fraction of the form

F (x) =
∑

x/mj<1

Aj
1− x/mj

+
∑

x/mj>1

Bj
x−mj

4.12

where we have

Aj = (1− x/mj)F (x)
∣∣∣
x=mj

and

Bj = (x−mj)F (x)
∣∣∣
x=mj

.

But we see that we have

1− x/mj

1− (x/mj)ej

∣∣∣
x=mj

=

{
1 if ej = 1
1−x/mj
x/mj−1 x/mj

∣∣∣
x=mj

= −1 if ej = −1

}
= ej

and thus we may also write

Aj = ej ×
(
1− (x/mj)

ej
)
F (x)

∣∣∣
x=mj

. 4.13
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Similarly we see that

x−mj

1− (x/mj)ej

∣∣∣
x=mj

=


x−mj
mj−x

∣∣∣
x=mj

mj = −mj if ej = 1

x−mj
x−mj x

∣∣∣
x=mj

= mj if ej = −1

}
= −ejmj

and we may thus also write

Bj = −ejmj × (1− (x/mj)
ej )F (x)

∣∣∣
x=mj

. 4.14

Now from 4.12 we derive (as we have seen in the proof of 4.5)

F (x)
∣∣∣
x0

=
∑

x/mj<1

Aj

and 4.15 gives

F (x)
∣∣∣
x0

=
∑

x/mj<1

ej × (1− (x/mj)
ej )F (x)

∣∣∣
x=mj

.

But, using the second identity in 4.8 (and taking also account of 4.9) we can also write

F (x)
∣∣∣
x0

=
∑

x/mj>1

Bj/mj

and 4.13 gives

F (x)
∣∣∣
x0

=
∑

x/mj>1

−ej × (1− (x/mj)
ej )F (x)

∣∣∣
x=mj

.

Note further that from 4.12 we derive that

F (x)
∣∣∣
x≥

=
∑

x/mj<1

Aj
1− 1/mj

=
∑

x/mj<1

−mj

1−mj
Aj 4.15

and 4.13 gives

F (x)
∣∣∣
x≥

=
∑

x/mj<1

−mj

1−mj
ej × (1− (x/mj)

ej )F (x)
∣∣∣
x=mj

.

This proves the first equality in 4.11. Moreover, setting x = 1 in 4.12 gives

F (1) =
∑

x/mj<1

−mj

1−mj
Aj +

∑
x/mj>1

Bj
1−mj

and from 4.15 we derive that

F (x)
∣∣∣
x≥

= F (1) −
∑

x/mj>1

Bj
1−mj

and using 4.14

F (x)
∣∣∣
x≥

= F (1) +
∑

x/mj>1

1

1−mj
ejmj × (1− (x/mj)

ej )F (x)
∣∣∣
x=mj

.
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This yields the second equality in 4.11 and completes our proof.

Remark 4.1
It will be convenient to say that a denominator factor 1− (x/mi)

ei is ‘contributing’ if x/mi < 1 and

say that it is ‘dually contributing’ if x/mi > 1. In using Proposition 4.2, our choice of applying 4.10 or 4.11

should be dictated by which is the smaller of the two: the number of contributing factors or the number of

dually contributing factors.

It should be mentioned that in the more general applications of the partial fraction algorithm, the

given kernel may be of the form

F =
P

(1−m1)a1(1−m2)a2 · · · (1−mn)ak

with some ai 6= 1, and worse yet the variable x to be eliminated may appear, in some of the mi, also to a

power 6= 1. The reader will find in the original papers how to deal with kernels of the most general form.

Here, the only additional cases we need are covered by the following auxiliary result.

Proposition 4.3
Suppose that our kernel is of the form

F (x) =
1

(1− Ux)
×G(x)

where G(x) is a rational function whose corresponding iterated formal Laurent series expands as a sum of

monomials which contain x only to a negative power. For instance if

G(x) =
P ( 1

x )∏k
i=1(1−mi/xai)

with P a polynomial, m1,m2, . . . ,mk and U monomials not containing x, ai ≥ 1 and

Ux < 1 , mi/x
ai < 1 for 1 ≤ i ≤ k

then

F (x)
∣∣∣
x0

= G(x)
∣∣∣
x=1/U

, F (x)
∣∣∣
x≥

=
1

(1− U)
×G(x)

∣∣∣
x=1/U

.

Proof

Recall that
∣∣
x0 deletes every monomial that contains x, and

∣∣∣
x≥

deletes every monomial that

contains x to a negative power and sets x = 1 otherwise.

In summary, since both these operators act separately on each individual monomial we need only

establish these identities in the case that G(x) itself is a monomial. But in this case we have

G(x) =
m

xa

with m a monomial and a > 0. Thus

1

(1− Ux)
×G(x)

∣∣∣
x0

=
1

(1− Ux)
× m

xa

∣∣∣
x0

= mUa = G(x)
∣∣∣
x=1/U
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and
1

(1− Ux)
×G(x)

∣∣∣
x≥

=
1

(1− Ux)
× m

xa

∣∣∣
x≥

= m
Ua

1− U
=

1

1− U
×G(x)

∣∣∣
x=1/U

as desired. This completes our proof.

Armed with this package of identities we can now proceed with our proof of the identity in 3.11.

Our goal is to obtain the rational function

G(y1, y2, y3; q) =
(1− y1a1/a2)(1− y2a2/a1)(1− y3/a2)

(1− qa)(1− qy1a1/a)(1− qay2a2/a1)(1− qay3/a2)(1− qy1y2a2/a)
×

× 1

(1− qy1a1y3/aa2)(1− qay2y3/a1)(1− qy1y2y3/a)

∣∣∣
a≥a

≥
1 a
≥
2

.

4.16

To begin, we choose our variable order by the requirement that we must have

q < y1 < y2 < y3 < a < a1 < a2 .

Under this order, all the monomials

y1a1/a
2 , y2a2/a1 , y3/a2 , qa

will be formally less than 1. This is consistent with the fact that we have made the replacements

y1 → y1a1/a
2 , y2 → y2a2/a1 , y3 → y3/a2 , q → qa

in the formal power series

G3(y1, y2, y3; q) =
1

(1− q)(1− q2y1y2)(1− q3y1y2y3)(1− q4y21y2y3)(1− q4y21y22y23)
. 4.17

We are now ready to carry out our calculation.

The result will be obtained by repetitive uses of Proposition 4.2. Noting that there are only two

contributing factors containing a1 in 4.16 and the same is true for a2 while there are 4 contributing factors

containing a, it appears more economical to eliminate first a1.

This given, separating the factors containing a1 we will rewrite 4.16 in the form

G(y1, y2, y3; q) =
(
F
∣∣∣
a
≥
1

) (1− y3/a2)

(1− qa)(1− qay3/a2)(1− qy1y2a2/a)(1− qy1y2y3/a)

∣∣∣
a
≥
2 a
≥

4.18

with

F =
(1− y1a1/a2)(1− y2a2/a1)

(1− qy1a1/a)(1− qay2a2/a1)(1− qy1a1y3/aa2)(1− qay2y3/a1)
.

Since our choice of total order makes F in proper form, to compute F
∣∣∣
a
≥
1

we can use Proposition 4.2 with

m1 =
a

qy1
, m2 = qay2a2 , m3 =

aa2
qy1y3

, m4 = qay2y3 .
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Using this notation we may write

F =
(1− y1a1/a2)(1− y2a2/a1)

(1− a1/m1)(1− (a1/m2)−1)(1− a1/m3)(1− (a1/m4)−1)
.

This gives under the conventions of Proposition 4.2

e1 = 1 , e2 = −1 , e3 = 1 , e4 = −1 .

Selecting the first equality in 4.12 and noting that the contributing factors are those containing m1 and m3

we derive that

F
∣∣∣
a
≥
1

=
−m1

1−m1
(1− a1/m1)F

∣∣∣
a1=m1

+
−m3

1−m3
(1− a1/m3)F

∣∣∣
a1=m3

= Q1 + Q3

with

Q1 =
− a
qy1

1− a
qy1

(1− a
qy1

y1/a
2)(1− y2a2/ a

qy1
)

(1− qay2a2/ a
qy1

)(1− a
qy1

qy1y3/aa2)(1− qay2y3/ a
qy1

)

=
1

1− qy1/a
−(1− qa)(1− qy1y2a2/a)/qa

(1− q2y1y2a2)(1− y3/a2)(1− q2y1y2y3)

and

Q3 =
− aa2
qy1y3

1− aa2
qy1y3

(1− y1 aa2
qy1y3

/a2)(1− y2a2/ aa2
qy1y3

)

(1− qy1 aa2
qy1y3

/a)(1− qay2a2/ aa2
qy1y3

)(1− qay2y3/ aa2
qy1y3

)

=
1

1− qy1y3/aa2
(1− a2/aqy3)(1− qy1y2y3/a)

(1− a2/y3)(1− q2y1y2y3)(1− q2y1y2y23/a2)
.

We can now rewrite 4.18 as

G(y1, y2, y3; q) = R1 +R3 4.19

with

R1 = Q1
(1− y3/a2)

(1− qa)(1− qay3/a2)(1− qy1y2a2/a)(1− qy1y2y3/a)

∣∣∣
a
≥
2 a
≥

=
1

1− qy1/a
−(1− qa)(1− qy1y2a2/a)/qa

(1− q2y1y2a2)(1− y3/a2)(1− q2y1y2y3)

(1− y3/a2)

(1− qa)(1− qay3/a2)(1− qy1y2a2/a)(1− qy1y2y3/a)

∣∣∣
a
≥
2 a
≥

=
1

(1− q2y1y2y3)
×

1

(1− q2y1y2a2)(1− qay3/a2)
× −1/qa

(1− qy1/a)(1− qy1y2y3/a)

∣∣∣
a
≥
2 a
≥

and

R3 = Q3
(1− y3/a2)

(1− qa)(1− qay3/a2)(1− qy1y2a2/a)(1− qy1y2y3/a)

∣∣∣
a
≥
2 a
≥

=
1

1− qy1y3/aa2
(1− a2/aqy3)(1− qy1y2y3/a)

(1− a2/y3)(1− q2y1y2y3)(1− q2y1y2y23/a2)
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−(1− a2/y3)y3/a2
(1− qa)(1− qay3/a2)(1− qy1y2a2/a)(1− qy1y2y3/a)

∣∣∣
a
≥
2 a
≥

=
1

1− qy1y3/aa2
−(1− aqy3/a2)a2/aqy3

(1− q2y1y2y3)(1− q2y1y2y23/a2)

−y3/a2
(1− qa)(1− qay3/a2)(1− qy1y2a2/a)

∣∣∣
a
≥
2 a
≥

=
1

(1− q2y1y2y3)
×

1

(1− qy1y3/aa2)(1− qy1y2a2/a)(1− q2y1y2y23/a2)

∣∣∣
a
≥
2

1/aq

(1− qa)

∣∣∣
a≥

.

We may rewrite the result of the last two calculations in the form

R1 =
1

(1− q2y1y2y3)
× S1

−1/qa

(1− qy1/a)(1− qy1y2y3/a)

∣∣∣
a≥

4.20

and

R3 =
1

(1− q2y1y2y3)
× S3

1/aq

(1− qa)

∣∣∣
a≥

4.21

with

S1 =
1

(1− q2y1y2a2)(1− qay3/a2)

∣∣∣
a
≥
2

and

S3 =
1

(1− qy1y2a2/a)(1− qy1y3/aa2)(1− q2y1y2y23/a2)

∣∣∣
a
≥
2

.

We will now choose to eliminate a2 next. We can immediately see that both S1 and S2 are very special cases

of Proposition 4.3 which gives

S1 =
1

(1− q2y1y2)

1

(1− qay3/a2)

∣∣∣
a2=1/q2y1y2

=
1

(1− q2y1y2)(1− aq3y1y2y3)
. 4.22

and

S3 =
1

(1− qy1y2/a)
× 1

(1− qy1y3/aa2)(1− q2y1y2y23/a2)

∣∣∣
a2=a/qy1y2

=
1

(1− qy1y2/a)

1

(1− q2y21y2y3/a2)(1− q3y21y22y23/a)
. 4.23

Using 4.22 and 4.23 in 4.20 and 4.21 now gives

R1 =
1

(1− q2y1y2y3)(1− q2y1y2)
× −1/qa

(1− aq3y1y2y3)(1− qy1/a)(1− qy1y2y3/a)

∣∣∣
a≥

=
1

(1− q2y1y2y3)(1− q2y1y2)
× T1

4.24

and

R3 =
1

(1− q2y1y2y3)
× 1

1− qy1y2/a
1

(1− q2y21y2y3/a2)(1− q3y21y22y23/a)

1/aq

(1− qa)

∣∣∣
a≥

=
1

(1− q2y1y2y3)
× T3 .

4.25
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Thus to eliminate a we are left with the computations of

T1 =
−1/qa

(1− aq3y1y2y3)(1− qy1/a)(1− qy1y2y3/a)

∣∣∣
a≥

and

T3 =
1/aq

(1− qa)(1− qy1y2/a)(1− q2y21y2y3/a2)(1− q3y21y22y23/a)

∣∣∣
a≥

.

Both of them are also immediate applications of Proposition 4.1. Thus

T1 =
1

(1− q3y1y2y3)
× −1/qa

(1− qy1/a)(1− qy1y2y3/a)

∣∣∣∣
a=1/q3y1y2y3

=
1

(1− q3y1y2y3)
× −q2y1y2y3

(1− q4y21y2y3)(1− q4y21y22y23)

and

T3 =
1

1− q
× 1/aq

(1− qy1y2/a)(1− q2y21y2y3/a2)(1− q3y21y22y23/a)

∣∣∣
a=1/q

=
1

(1− q)(1− q2y1y2)(1− q4y21y2y3)(1− q4y21y22y23)
.

Combining these results with 4.20 and 4.21 gives

R1 =
1

(1− q2y1y2y3)(1− q2y1y2)
× −q2y1y2y3

(1− q3y1y2y3)(1− q4y21y2y3)(1− q4y21y22y23)

R3 =
1

(1− q2y1y2y3)
× 1

(1− q)(1− q2y1y2)(1− q4y21y2y3)(1− q4y21y22y23)

and 4.19 gives

G(y1y2, y3; q) =
−q2y1y2y3(1− q) + (1− q3y1y2y3)

(1− q2y1y2y3)(1− q)(1− q2y1y2)(1− q3y1y2y3)(1− q4y21y2y3)(1− q4y21y22y23)

=
1

(1− q)(1− q2y1y2)(1− q3y1y2y3)(1− q4y21y2y3)(1− q4y21y22y23)

as desired. This completes our proof of the identity in 3.11.
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