Ribbons and Homogeneous Symmetric Functions

Mike Zabrocki

York University
Toronto, Canada

The Symmetric Functions

$$
\Lambda=\mathbb{Q}\left[h_{1}, h_{2}, h_{3}, \ldots\right]
$$

The space of symmetric functions is generated algebraically by the simple homogeneous symmetric functions. This may be taken as a definition.

The Schur Functions

$$
s_{\lambda}=\operatorname{det}\left|h_{\lambda_{i}+i-j}\right|
$$

The definition of the Schur polynomials is well known and they are a fundamental basis of the symmetric functions.
Schur functions will be identified here with the Young diagrams for the partition.

Rule 1: A Straightening Rule for Schur Functions

A column of size $m \&$ a column of $n=$ - a col. of size $n-1 \&$ a col. of size $m+1$

Note: a column of size m on a column of $m+1$

An example of the straightening rule:

$=\square \square \square=\square \square \square=0$

Example 2:

Rule 2:
 The Littlewood-Richardson Rule

A combinatorial rule for expanding skew Schur functions in terms of Schur functions indexed by partitions.

Definition: skew-Schur function for λ / μ skew partition

$$
s_{\lambda / \mu}=\operatorname{det}\left|h_{\lambda_{i}-\mu_{j}+i-j}\right|
$$

The LR-rule:

$$
s_{\lambda / \mu}=\sum_{\nu} c_{\nu \mu}^{\lambda} s_{\nu}
$$

where the coefficients $c_{\nu \mu}^{\lambda}$ are the number of ways of filling a Young diagram of shape λ / μ with $\nu_{1} 1$'s, $\nu_{2} 2$'s, ν_{3} 3's, etc. such that the filling increases weakly in the rows, strictly in the columns AND the for each k, the first k entries of the reverse reading word has partition content.

Example 1: In the case when the inner partition consists of only one square the result is equivalent to removing each of the corner cells of the outer partition:

Example 2: In the case that the inner partition is a is a single row, the result is equivalent to removing all horizontal strips of the same size from the border of the outer partition.

Example 3: Something a little more complicated

Ribbon Operators

Ribbon operators use a combination of the operation of straightening columns followed by the Littlewood-Richardson rule.

then remove the shape

Example 1:

remove

[^0]Now reduce this with the Littlewood-Richardson rule.

A dual Pieri rule :

The sum of all ribbon operators of size m adds a column on the homogeneous symmetric functions.

> adds a column of size 1 on a homogeneous symmetric function with at most 1 part

adds a column of size 2 on a homogeneous symmetric function with at most 2 parts

adds a column of size 3 on a homogeneous symmetric function with at most 3 parts

adds a column of size $4 \ldots$ etc.

Example 1: adding a column of size 3 on the empty Schur function yields $: h$

Example 2: Add a column of size 3 on $h^{\text {日 }}$ yields h^{\nexists} $(\square+\square+\square+\square+\square)(\square+2 \square+\square \square \square)=$

 $\square\left(\square+2 \square+\frac{\square \square \square}{\square \square \square}+2 \square \square \square+\square \square \square \square \square\right.$

$$
-\square+\square \square
$$

Open question:

Combinatorially prove the positivity of a composition of these operators (they yield the homogeneous symmetric functions, of course they are Schur positive). Does this give a new combinatorial interpretation of the homogeneous symmetric functions?

Generalizations:

There exist q (a dual Morris recurrence) and q, t (a Macdonald-Morris recurrence) analogs of the ribbon rule. Can these generalized operators be used to show positivity of the Hall-Littlewood and Macdonald symmetric functions?

[^0]: remove

