# **Ribbons and Homogeneous Symmetric Functions**

Mike Zabrocki

York University Toronto, Canada

### The Symmetric Functions

 $\Lambda = \mathbb{Q}[h_1, h_2, h_3, \ldots]$ 

The space of symmetric functions is generated algebraically by the simple homogeneous symmetric functions. This may be taken as a definition.

### The Schur Functions

 $s_{\lambda} = det |h_{\lambda_i + i - j}|$ 

The definition of the Schur polynomials is well known and they are a fundamental basis of the symmetric functions. Schur functions will be identified here with the Young diagrams for the partition.

#### Rule 1: A Straightening Rule for Schur Functions

A column of size m & a column of n = -a col. of size n - 1 & a col. of size m + 1



Note: a column of size m on a column of m + 1

$$= - = 0$$

#### An example of the straightening rule:









#### Rule 2: The Littlewood-Richardson Rule

A combinatorial rule for expanding skew Schur functions in terms of Schur functions indexed by partitions.

Definition: skew-Schur function for  $\lambda/\mu$  skew partition

$$s_{\lambda/\mu} = det |h_{\lambda_i - \mu_j + i - j}|$$

The LR-rule:

$$s_{\lambda/\mu} = \sum_{\nu} c_{\nu\mu}^{\lambda} s_{\nu}$$

where the coefficients  $c_{\nu\mu}^{\lambda}$  are the number of ways of filling a Young diagram of shape  $\lambda/\mu$  with  $\nu_1$  1's,  $\nu_2$  2's,  $\nu_3$  3's, etc. such that the filling increases weakly in the rows, strictly in the columns AND the for each k, the first k entries of the reverse reading word has partition content. Example 1: In the case when the inner partition consists of only one square the result is equivalent to removing each of the corner cells of the outer partition:



Example 2: In the case that the inner partition is a is a single row, the result is equivalent to removing all horizontal strips of the same size from the border of the outer partition.







#### **Ribbon Operators**

Ribbon operators use a combination of the operation of straightening columns followed by the Littlewood-Richardson rule.



Now reduce this with the Littlewood-Richardson rule.

#### A dual Pieri rule :

The sum of all ribbon operators of size m adds a column on the homogeneous symmetric functions.

adds a column of size 1 on a homogeneous symmetric function with at most 1 part



adds a column of size 2 on a homogeneous symmetric function with at most 2 parts



adds a column of size 3 on a homogeneous symmetric function with at most 3 parts



adds a column of size 4... etc.





### **Open question:**

Combinatorially prove the positivity of a composition of these operators (they yield the homogeneous symmetric functions, of course they are Schur positive). Does this give a new combinatorial interpretation of the homogeneous symmetric functions?

## Generalizations:

There exist q (a dual Morris recurrence) and q, t (a Macdonald-Morris recurrence) analogs of the ribbon rule. Can these generalized operators be used to show positivity of the Hall-Littlewood and Macdonald symmetric functions?