Symmetries of the k-bounded partition lattice

Chris Berg, Mike Zabrocki

LaCIM, Université du Québec à Montréal, York University
cberg@lacim.ca, zabrocki@mathstat.yorku.ca
Suter's cyclic symmetry in Young's lattice

$k=3$ Proposition 1. (Suter, 2002) The partitions w
Examples of generalized Suter symmetry

Examples with $k=3$ and $m=2,3,4$

$$
\text { naripies witin - } 0 \text { alia } m=2,3,4
$$

Weak order on $k+1$-cores and alcoves in the fundamental chamber of \tilde{A}_{k}

Theorem 2. The alcoves in an m-dialation of the fundamental alcove form a poset isomorphic to the poset of $k+1$-cores contained in a concatenation of $m-1$ different rectangles with a k-hook.
Here we have shown the $m=3$ dialation of the A_{3} fundamental chamber. Suter's symmetry is an $m=2$ dialation. The cyclic symmetry that we observe on this poset is inherited from the cyclic symmetry of the fundamental alcove and the affine Dynkin diagram of type A

More precise geometric picture, Connection to k-Schur functions and cyclic seiving
Let $\alpha_{i}=(\underbrace{0,-1,-1, \underbrace{0, \ldots, 0}_{k-i-1}) \text { for } 1 \leq i \leq k \text { be the simple roots for the finite root system of type } A \text {. Also set } \phi=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k} \text { and }}_{\substack{0, \ldots, 0}}$
define $H_{\alpha, r}$ be the set of vectors such that $\langle\alpha, v\rangle=r$ (these are the hyperplanes perpendicular to α at a distance of r from the origin). The m-dilation of the fundamental alcove is the area bounded by the planes $H_{\alpha_{i}, 0}$ and $H_{\phi, m}$.

Proposition 3. The $k+1$-cores indexed by a concatenation of $m-1$ maximal rectangles are in bijection with the alcoves that share a face with $H_{\phi, m}$ and a vertex with $H_{\phi, m-1}$ and are a translation of the fundamental alcove.
rectangles are known to be special elements of the ring

Nathan Williams has identified an action on words of length k in the alphabet $\{0,1,2, \ldots, m-1\}$ and a relation that defined a poset with a cyclic sieving phenomenon. Along with Hugh Thomas, they have shown that there is a bijection between the poset of words and the m dilation of the fundamental alcove. In summary, we know that following sets are in bijection:
$k+1$ cores contained in a concatenation of $m-1$ maximal rectangles
k bounded partitions also contained in a concatenation of $m-1$ maximal rectangles
alcoves in the m dilation of the fundamental alcove
words of length k in the alphabet $\{0,1,2, \ldots, m-1\}$
words of length $k+1$ in the alphabet $\{0,1,2, \ldots, m-1\}$ that sum to $0(\bmod m)$

